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Abstract

Emerging and re-emerging pathogens exhibit very complex dynamics, are hard to model

and difficult to predict. Their dynamics might appear intractable. However, new statistical

approaches—rooted in dynamical systems and the theory of stochastic processes—have

yielded insight into the dynamics of emerging and re-emerging pathogens. We argue that

these approaches may lead to new methods for predicting epidemics. This perspective

views pathogen emergence and re-emergence as a “critical transition,” and uses the

concept of noisy dynamic bifurcation to understand the relationship between the system

observables and the distance to this transition. Because the system dynamics exhibit char-

acteristic fluctuations in response to perturbations for a system in the vicinity of a critical

point, we propose this information may be harnessed to develop early warning signals. Spe-

cifically, the motion of perturbations slows as the system approaches the transition.

Anticipating epidemic transitions

Outbreaks of re-emerging pathogens are among the most unpredictable threats to public

health and global security [1]. In recent years, epidemics of measles, mumps, polio, whooping

cough and other vaccine-preventable diseases have caused death and disease [2, 3], captured

headlines and focused political attention, and prompted substantial investment in emergency

planning and preparedness in both developed and developing countries. The causes of patho-

gen re-emergence (as well as the emergence of new pathogens) are variable and seemingly idi-

osyncratic [4]. For this reason, predicting their eruption might seem intractable [5]. Here we

question this pessimism and suggest instead that data-driven methods based on the character-

istic fluctuations of near-critical systems may provide model-independent measurements of

the approach to disease criticality before a crisis occurs.

The approach we propose anticipates disease re-emergence through a critical transition,

i.e. when driving factors such as pathogen evolution, spatial movement, or (most central
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to the argument in this paper) changes in vaccine uptake cause the system to drift toward

the critical point where transmission is sustained. Following Scheffer [6], we define a critical

transition as a phenomenon in which a small perturbation to a system’s state or a small

change in one of its parameters triggers a cycle of positive feedback that results in a regime

shift, i.e., a qualitative change in the dynamics of the system, holistically characterized in

terms of attracting points, stochastic fluctuations, and cycles. Critical transitions are to be

contrasted with regime shifts that are a direct consequence of large, external shocks. Critical

transitions have also been considered in terms of bifurcations of dynamical systems, which

provides a useful way to think about the behaviors of near-critical systems, like re-emerging

infectious diseases [7]. Most importantly, neither the location of the critical transition

nor the state of the system is perfectly known. It is thus the consistent behavior of diverse

models near bifurcation that provides the model-independent basis for predicting critical

transitions.

In contrast to most research on critical transitions, which concern the catastrophic shifts

associated with saddle-node bifurcations, epidemic transitions are associated with a transcriti-

cal bifurcation, which is not abrupt, but piecewise continuous. That is, when the mean preva-

lence moves above zero in response to a small change in parameters, it nonetheless remains

close to zero. Therefore, there can be no rapid shift to a distant equilibrium. However, even

these incremental increases in theoretical prevalence are important due to stochastic effects

when the pathogen is introduced at a low rate from an external source. This is because even if

each infectious case can, on average, generate more than one additional case, there is a non-

zero probability of the chain of infections going extinct before an epidemic occurs [8]. There-

fore, the state of the stochastic system may remain close to zero prevalence even as the stable

equilibrium value of prevalence predicted by the deterministic model increases. By the time an

epidemic occurs, the stable equilibrium may be distant from zero and it becomes appropriate

to consider the rapid change in the state of the system over the course of the outbreak as a criti-

cal transition. Particularly, Dibble et al. [8] showed that for a simple model of disease emer-

gence, epidemics moving to a distant stable equilibrium were typical of a wide range of

parameter values.

Our goal is to find statistical methods to anticipate epidemics. The point in connecting

outbreak potential with bifurcations is that the theory of near-critical systems predicts that

dynamics will exhibit consistent features, stemming from the phenomenon of critical slowing
down [6, 7, 9]. This is distinct from effects of individual heterogeneity or movement on the

existence and location of the critical threshold [10, 11]. As is well known, in the vicinity of a

bifurcation, critical slowing down can be understood mathematically through stability analy-

sis [12]. In continuous-time and for frequent perturbations, the transmission process may be

approximately represented by a system of stochastic differential equations, which can be

studied using a linear Fokker-Planck equation, the solution of which is a Gaussian distribu-

tion [13]. Such analysis shows correlations for this process to decay exponentially, with char-

acteristic timescales given by the reciprocals of the eigenvalues of the drift matrix [13]. At the

transition, the drift matrix in the Fokker-Planck equation becomes singular, implying that

perturbations in (or near) one direction will persist indefinitely. Various statistically measur-

able properties may arise from the increasing persistence of perturbations. For instance, from

the Fokker-Planck equation it can also be shown that the second moment of fluctuations in

the dominant eigendirection diverges as an eigenvalue approaches zero. In data generated by

such a process, this would be manifested as an increase in sample variance. Such an empirical

early warning signal therefore provides evidence that the system is approaching a critical

transition.
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Critical slowing down in a contagion process with vaccination

Critical slowing down is illuminated by a closer look at a theoretical contagion process. We

start with the standard model of mathematical epidemiology, the general epidemic or SIR

model [14, 15], shown schematically in Fig 1. A finite population with a fixed expected size is

divided into classes of Susceptible, Infected, and Removed individuals, denoted S, I, and R,

respectively. Variables affecting flow from one class to another are the transmission rate β, the

“sparking rate” η (which mimics the transmission from outside sources), the recovery rate γ,

the birth rate b, the fraction of births that are immunized by vaccination ν, and the death rate μ
(Fig 1). Because the population size is finite, the dynamics are subject to demographic stochas-

ticity [16]. An approximate description of the dynamics of the susceptible and infected classes

is given by the stochastic differential equations

dS
dt
¼ � bSI � ZSþ bð1 � nÞ � mSþ wSðtÞ;

dI
dt
¼ bSI þ ZS � ðgþ mÞI þ wIðtÞ;

ð1Þ

where wS(t) and wI(t) are zero mean Gaussian white noise sources with covariance matrix

B ¼
bSI þ ZSþ bð1 � nÞ þ mS � ðbSI þ ZSÞ

� ðbSI þ ZSÞ bSI þ ZSþ ðgþ mÞI

" #

: ð2Þ

Despite their simplicity, such models have provided profound insight into many features of

infectious disease dynamics and contagion processes in general [14]. An extension of this

model, accommodating an infected-but-not-infectious state, is the SEIR model (Fig 1).

Interestingly, the SEIR model predicts with remarkable accuracy the period of oscillations

apparent in time series of disease incidence for a number of well-known infectious diseases

Fig 1. The SIR and SEIR models.

https://doi.org/10.1371/journal.pcbi.1006917.g001
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[17]. Table 1 reproduces the classic finding of Anderson and May [14] showing agreement

between predicted and observed periods of oscillation for measles, rubella, mumps, poliomy-

elitis, smallpox, chickenpox, scarlet fever, diphtheria, and pertussis from a variety of eras and

locations (see also Ref. 17). For these disease systems, in which the host lifespan greatly exceeds

the infectious period (μ� γ), the number infected in the model exhibits oscillations with a

natural period of approximately 2p
ffiffiffiffiffiffiffi
AD
p

, where A is the average age at which the infection is

acquired and D is the expected duration of the infection (i.e., the sum of the latent and infec-

tious periods) [18]. The predictions are thus based on empirical estimates of A and D and the

agreement between theory and data provides evidence that these simple models capture the

main rules that govern many infectious disease systems. As we shall show, this success also

provides empirical evidence for the premise that the speed of the dynamics of an infectious dis-

ease system indicates proximity to the immunization threshold.

For our theory, the essential link between the dynamics of the disease and the proximity to

control by vaccination lies in the stability of its equilibrium. For trajectories that begin in the

neighborhood of the equilibrium, we simplify the equations by linearizing them [12]. The solu-

tions of the linear system are equivalent to those of a damped harmonic oscillator [15], and

thus one can draw on well-known equivalent physical systems, such as a mass on a spring, to

understand the dynamics. Fig 2 illustrates this phenomenon by analogy to a ball sliding in a

well for various levels of the vaccine uptake. The increased depth of the well corresponds to

increased stability of the equilibrium. In Fig 2 the wells become more shallow as the vaccine

uptake moves closer to the threshold. Balls placed a given distance to the right of the bottom of

the wells in the diagram will move most slowly in the well that is closest to the immunization

threshold.

Stability of the endemic equilibrium

Insight into the dynamics of the SIR model (Eq 1) is obtained through linear stability analysis.

As is well known, in the vicinity of a bifurcation, critical slowing down can be understood

Table 1. Inter-epidemic periods of some common infections.

Infection Setting Calculated Observed

Measles England and Wales, 1948–68 2 2

Aberdeen, Scotland, 1883–1902 2 2

Baltimore, USA, 1900–27 2 2

Paris, France, 1880–1910 2 2

Yaounde, Cameroun, 1968–75 1–2 1

Rubella Manchester, UK, 1916–83 4–5 3.5

Glasgow, Scotland, 1929–64 4–5 3.5

Mumps England and Wales, 1948–82 3 3

Baltimore, USA, 1928–73 3–4 2–4

Poliomyelitis England and Wales, 1948–65 4–5 3–5

Smallpox India, 1868–1948 4–5 5

Chickenpox New York City, USA, 1928–72 3–4 2–4

Glasgow, Sotland, 1929–72 3–4 2–4

Scarlet fever England and Wales, 1897–1978 4–5 3–6

Diphtheria England and Wales, 1897–1979 4–5 4–6

Pertussis England and Wales, 1948–85 3–4 3–4

Theoretical and observed inter-epidemic periods (in years) of some common infections (from Table 6.1 of Ref. 14).

https://doi.org/10.1371/journal.pcbi.1006917.t001
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mathematically through linear stability analysis [12]. When a system is perturbed away from a

stable equilibrium, the perturbations decay with a rate determined by the eigenvalues of the

linearized system. The condition for an equilibrium to be stable in a continuous-time system is

that all eigenvalues have negative real component (or are less than unity for a discrete-time sys-

tem); a bifurcation occurs when this condition is violated [12]. As the model parameters vary,

the approach to the bifurcation is characterized by an increase in one or more of the eigenval-

ues. In the neighborhood of the transition, the dominant eigenvalue (the eigenvalue with larg-

est real part) becomes increasingly close to zero (one for discrete-time dynamics) [12]. The

fluctuations about the equilibrium, z(t) = (zS, zI), solve the system of linear equations,

dz
dt
¼ Jz; ð3Þ

where the matrix J is the Jacobian evaluated at the equilibrium. By differentiating the second

equation in Eq 3 with respect to time and eliminating zS, one obtains

d2zI
dt2
� t

dzI
dt
þ DzI ¼ 0; ð4Þ

where τ and Δ respectively denote the trace and determinant of the Jacobian matrix. The sec-

ond order linear differential equation, Eq 4, describes the dynamics of a damped harmonic

oscillator [19]. Following this physical analogy, the potential at point zI is found by integrating

Fig 2. Critical slowing down is illustrated in the potential function of the linearized SIR model. Disease prevalence (I/N) is represented by the

horizontal position of a ball sliding through viscous fluid in a well having a height determined by the potential function. Both the depth of the well and

the viscosity of the fluid in the equivalent physical system are affected by vaccine coverage. The well is shallowest near the immunization threshold,

which illustrates the slowing down of the dynamics as the critical point (νc� 0.941; green dashed line) is approached. Oscillatory dynamics occur at

another immunization level (ν� 0.939) corresponding to the system becoming underdamped (pink region). Model parameters: b = 2 × 105 y−1, μ =

0.02 y−1, γ = 365/22 y−1, η = 2 × 10−5 y−1, R0 = 17. To write the potential function in terms of prevalence, we scaled the deviations of the linearized

system by the square root of the equilibrium population size (i.e., scaled by
ffiffiffiffiffiffiffiffi
b=m

p
). Critical slowing down is seen in this figure in the relative magnitude

of the displacement of the ball with respect to the distance from the critical level of immunization.

https://doi.org/10.1371/journal.pcbi.1006917.g002
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the restorative force, VðzIÞ ¼
Dz2

I
2

. Changes in Δ result in changes to the depth of the wells in

Fig 2. Another informative quantity is the damping ratio z ¼ � t=
ffiffiffiffiffiffi
4D
p

. A damping ratio of

less than one indicates that the trajectory of zI will oscillate as it approaches zero. The equation

for zI is zI (t) = k1 exp(λ1t) + k2 exp(λ2t) where λ1 and λ2 are the eigenvalues of J and k1 and k2

are determined by the initial values of zI and zS.
Equations for the eigenvalues of the Jacobian provide a precise statement of the relationship

between the distance of the vaccine uptake to the immunization threshold and the speed of the

dynamics. This fact might be useful in practical applications where the distance to the thresh-

old is unknown. For the SIR model, it is instructive to consider the equations in the limiting

case that the sparking rate η = 0, recognizing that for small η the eigenvalues will differ only

slightly [20]. Let N = b/μ be the expected total population size. When η = 0, for high enough ν,

the Jacobian at the disease-free equilibrium of (S�, I�) = (N(1 − ν), 0) has the eigenvalues of −μ
and (γ + μ)[R0(1 − ν) − 1], where the basic reproduction number, R0 = Nβ/(γ + μ), is a control-

ling parameter for the model in the absence of vaccination (i.e., when ν = 0). In the presence of

vaccination, the controlling parameter is the product R0(1 − ν). To see why, note that when

R0(1 − ν)< 1, both of the eigenvalues of the disease-free equilibrium are negative and thus

small deviations from the disease-free equilibrium decay exponentially over time. Hence,

introduction of the disease will not lead to an epidemic or the disease persisting endemically.

Rather, transmission is prevented by vaccination. In contrast, when R0(1 − ν)> 1, one of the

eigenvalues is positive and thus a small deviation from the disease-free equilibrium will grow

exponentially until it is no longer small. In this case, the model has an endemic equilibrium at

(S�, I�) = (N/R0, (μ/β)[R0(1 − ν) − 1]), which is stable. The eigenvalues of the Jacobian at this

point are

� mR0ð1 � nÞ

2
�
ð� mR0ð1 � nÞÞ

2

4
� mðR0ð1 � nÞ � 1Þðmþ gÞ

� �1=2

: ð5Þ

Putting it all together, when R0(1 − ν) = 1, one of the eigenvalues is zero and there is neither

exponential growth nor decay toward the equilibrium point. As R0(1 − ν) decreases below 1

and the distance from the immunization threshold increases, one of the eigenvalues of the dis-

ease-free equilibrium becomes more negative and the rate at which perturbations in the associ-

ated direction decay increases. Likewise, as R0(1 − ν) increases above 1, at least one of the

eigenvalues of the endemic equilibrium becomes greater in magnitude, and the rate at which

perturbations in the affected direction move back toward the equilibrium also increases.

When the eigenvalues form a complex conjugate pair, the number of infections repeatedly

overshoots the equilibrium (i.e., the system is underdamped) and the perturbations begin to

approach the equilibrium via damped oscillations. In this case, the complex modulus of the

eigenvalues measures their magnitude, and it is equal to [μ(μ + γ)(R0(1 − ν) − 1)]1/2 = det(J)1/2.

The modulus summarizes both the rate of contraction and the frequency of oscillation of the

inward spiral to the equilibrium. In summary, equations for the eigenvalues show that the

speed at which perturbations return to the equilibrium increases with |R0(1 − ν) − 1|, the dis-

tance of the control parameter to its critical value.

Observable statistics

If the trajectories that result from perturbations can be directly observed, as might be the case

for data from a large population, these relationships can be used directly to determine the dis-

tance to an immunization threshold [8]. Fig 3 illustrates how the motion of perturbations

slows as the immunization level approaches the critical level of about 94% (in our example).
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Consequently, as the immunization level drops to 90%, the total length of the plotted series

increases although all the series represent trajectories of perturbations over a period of equal

duration. Particularly conspicuous is the increased number of cycles in the trajectories. That is

the feature of the dynamics studied in the work of Anderson and May [14, 17]. Although oscil-

lations in both our and their model decline in amplitude over time, a great deal of research has

been devoted to explaining why that decay may not occur for real systems. For example, sto-

chasticity and seasonal variation in the transmission rate both have been shown to counteract

the damping of oscillations [21–23]. The model-predicted periods of oscillation, then, are also

calculations of the imaginary part of the eigenvalue of the Jacobian. To see that, note that when

μ� γ and R0(1 − ν)� 1, the imaginary part of the eigenvalue for our SIR model may be

approximated as [μ(R0(1 − ν) − 1)γ]1/2. Also, for small μ, the mean age of infection A� [μ
(R0(1 − ν) − 1)]−1 [14]. Letting D = γ−1, the expected value of the infectious period, we then

have (AD)−1/2 for the imaginary part of the eigenvalue. Thus we have recovered the expression

for the period of 2π(AD)1/2. As the vaccination rate increases and approaches the threshold,

the period 2π(AD)1/2 increases.

Likewise, the real part of the eigenvalues for our SIR model at the endemic equilibrium can

be approximated as −μR0(1 − ν)/2. As the distance to the immunization threshold |R0(1 − ν) −
1| decreases, the real part of the eigenvalues becomes closer to 0. Because the recovery rate of

the amplitude of the oscillations is monotonically related to the real part of the eigenvalues, the

recovery of the system from perturbations to its equilibrium slows down. To examine the

Fig 3. Dynamics of deterministic component of SIR model. Dynamics of the deterministic component of the SIR model (Eq 1) as a function of

vaccine uptake. The motion becomes slower as the vaccine uptake approaches the threshold. Parameters are as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006917.g003
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slowing down, we define a recovery rate as λ = d ln r/dt, where r is the amplitude of the oscilla-

tion of (I − I�)/N. The recovery rate of the amplitude λ decreases as the vaccination rate

increases.

Thus, it is now clear how the change of eigenvalues corresponds to the more general slow-

ing of the dynamics as the distance to the immunization threshold |R0(1 − ν) − 1| decreases.

This dynamical slowing down is related to the change of both real and imaginary parts of the

eigenvalues. The change in the imaginary part results in the lengthening of the period, while

the change in the real part affects the recovery rate of the amplitude of the oscillations. Thus,

in one sense, the validity of the general approach that relates the speed of a system’s dynamics

to its distance to an immunization threshold is well established.

In addition to the distance-speed relationship across populations, there is also some work

validating the distance-speed relationship within populations. For example, other work by

Anderson and May [24] notes that the period of measles in England and Wales appears to

have lengthened to about 3 years following the introduction of extensive immunization in

1968. Curiously, however, the increases in periodicity and average age of infection are not as

great as a simple SEIR model would predict [25], perhaps due to strong assortative age mixing

[26, 27]. Similarly, whooping cough cycles increased in length in many populations after vacci-

nation [25, 28]. Although this list of examples is short, it nevertheless shows the phenomenon

of critical slowing down to be sufficiently robust to appear in data from natural populations.

Anticipating emergence and re-emergence

The aim of the present article is to suggest ways by which these behaviors in near-critical sys-

tems illuminate the approach to epidemic transitions [20, 29]. Showing that observable sum-

mary statistics behave in characteristic ways in parametric models provides grounds for

measuring the same statistics in data. One way to find more examples of distance-speed rela-

tionships could be to use a model that explicitly accounts for the effects of random noise on

system dynamics [30]. For small populations, particularly, one expects the intrinsic noise from

demographic stochasticity to play an important role [16, 21, 30]. The decay of individual per-

turbations in such a system are obscured from direct observation by the noise, but their slow-

ing down can be deduced from distributional properties of the time series [20, 29, 31].

One potentially useful distributional property is the variance, which arises from the balance

between the random noise that generates perturbations (the Brownian motion terms in the

model) and the rate at which perturbations decay toward the equilibrium [32]. We have

already seen that, in at least one direction, the rate of decay approaches zero as a threshold is

approached, caused by either the dominant eigenvalue, or the real part of the dominant eigen-

value, approaching 0. Unless the noise decreases equally fast, the system is unable to as effi-

ciently dissipate perturbations and variation accumulates. This implies that for demographic

stochasticity in a population not undergoing major changes in size, any changes in the vari-

ance of the noise are typically much smaller than the changes in this relaxation. Consequently,

the variance of the time series tends to peak when the control parameter is near the threshold

of a model [20, 29, 33]. However, for a multivariate model such as our SIR model, the variance

of the time series for individual variables can behave much differently [34]. Figs 2, 4 and 5

show that the variance of the number infected always decreases with the vaccine uptake,

whether or not the threshold is being approached. This is because the variance of the perturba-

tions to I increases with vaccine uptake enough to wash out the signal of changes in stability.

On the other hand, the variance of S peaks closer to the critical immunization level. One impli-

cation of this property is that changes in the variance of S could be more useful for monitoring

an approach to the critical level.
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Fig 4. Variance as a function of vaccine uptake. The variance of S and the generalized variance peak near the threshold, whereas the variance of I
always decreases as vaccine uptake increases. The right panel shows that the variance of S would not be as informative as that of I for an approach to the

threshold from above. Parameters are as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006917.g004

Fig 5. Dynamics of the number infected in a slow approach to elimination. Critical slowing down does not lead to an increase in the variance of this

variable as the immunization threshold is approached. However, critical slowing down can still be observed from the decrease in the frequency of

oscillations in the autocorrelation function (ACF). Vaccine uptake ν increasing 0.025/year from ν = 0 in year 20. Other parameters are as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006917.g005
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One might also expect that in a multivariate model a multivariate summary of variance

would peak near the threshold, based on the fact that the variance should be very high along

the eigendirection associated with the eigenvalue that approaches zero, which should dominate

a multivariate summary of the variance. Because the stationary distribution of the linearized

model is bivariate normal [13], we can visualize the bivariate spread of the data as an ellipse

that represents the smallest region that contains 95% of observed deviations of S and I from

their equilibrium values. Fig 6 plots these regions for a range of immunization levels. One can

see that the regions are largest between the points when the variance in S is maximized and

when the variance of I is maximized. One numerical summary of these features is the general-

ized variance [35], defined as the determinant of the variance-covariance matrix, which is pro-

portional to the area of the ellipses squared. Fig 4 shows that the generalized variance also

peaks somewhat close to the threshold, although not as close as does the variance of S. We

have noticed that these peaks come closer to the threshold as the per capita sparking rate η is

reduced, but even in the limit that η = 0 their peaks lie at immunization levels slightly below

the threshold. Thus when approaching the immunization threshold from below, trends in the

generalized variance or the variance of S are most likely to increase when the threshold is rela-

tively distant. They are then perhaps best suited to monitoring the progress of an immuniza-

tion program in its early stages. The variance could also be useful as an early warning signal

for disease re-emergence resulting from declining vaccine uptake. Fig 4 shows that the vari-

ance of S, I, and also the generalized variance accelerates upwards as the immunization thresh-

old is approached from above. In summary, for vaccine-preventable diseases that are aptly

Fig 6. Bivariate spread of the deviations from the equilibrium as a function of vaccine uptake. The ellipses indicate the area containing the

deviations 95% of the time. The area of the ellipse is largest in the vicinity of the threshold immunization level, which is consistent with the common

result that critical slowing down leads to increases in variance. Parameters are as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006917.g006
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modeled by an SIR model near equilibrium subject to regular perturbations by intrinsic noise,

trends in the variance of a time series can be useful indicators of trends in vaccine uptake.

A second potentially useful distributional property is the autocorrelation. The autocovar-

iance of small deviations from the equilibrium at a given lag is given by the product of the

covariance matrix and the matrix exponential of the Jacobian times the lag [13]. It follows that

the autocorrelation function has the form of a mixture of exponential functions of the lag mul-

tiplied by the eigenvalues. In general, the mixture of the exponentials is different for S and I
and it depends on how the eigendirections of the Jacobian project onto each variable and also

on the covariance matrix of the noise that generates perturbations of the system. Importantly,

for a model excited by intrinsic noise and controlled by vaccination, the decay rate of the auto-

correlation of I, and not that of S, is often close to the value of the eigenvalue that crosses zero

at the immunization threshold. Thus the autocorrelation of I at a given lag often increases

when vaccine uptake is declining toward the threshold value.

Another case of interest is when the disease is endemic but vaccine uptake is rising. In this

case, the system is often underdamped, and the autocorrelation exhibits damped oscillations as

the lag increases. The imaginary part of the eigenvalues can then be estimated by the frequency

of the oscillation and the real part of the eigenvalue by the damping rate. Observations of either

the S or I variable can be used to estimate the autocorrelation function. Fig 5 illustrates how an

autocorrelation function of this form changes with increasing vaccine uptake. It is also clear

from the figure that the time series of I itself oscillates with a characteristic frequency. How-

ever, in the presence of intrinsic noise the dominant frequency of the time series of I does not

in general have a simple relationship with the eigenvalues of the Jacobian [16]. This implies

that estimating both the damping and the periodicity of the autocorrelation function may pro-

vide a more reliable estimate of the distance to the immunization threshold than simply identi-

fying the dominant frequency of the time series of the number infected.

The variance and autocorrelation are but two of a growing number of distributional proper-

ties that are expected to change in predictable ways as a threshold is approached [29, 36, 37].

Thresholds—not just in the SIR model that we have used as an example—for many types of

bifurcations in models of different systems have an underlying deterministic component.

Indeed, the apparent versatility of these methods combined with the difficulty of pinning com-

plex systems down to a specific model has made them the subject of much current research. It

is reasonable to expect that the approach to epidemic transitions, including catastrophic transi-

tions, in a wide variety of transmission systems may be estimable from the observable dynam-

ics of the system, in a manner similar to what we have described using a stochastic SIR model.

It also seems reasonable that, as we have seen for the SIR model, the signals of the approaching

bifurcation may sometimes be complicated and depend on the observation of certain key vari-

ables [34]. The benefit of working out such details for more realistic models could be improve-

ments in our ability to predict epidemics of emerging infectious diseases.

Conclusions

Many factors can result in the emergence and re-emergence of infectious diseases, including

collective changes in individual movement patterns, population-level birth rates, pathogen

evolution and, most poignantly, declines in vaccine uptake [38]. Consequently, re-emergence

occurs regularly in populations around the world [39]. Although infectious disease forecasting

is an active area of research [40–43], methods for anticipating disease emergence and re-emer-

gence remain under-developed, hampering preparedness, surveillance and detection, and

the development of response strategies. Further, although the study of infectious disease

dynamics is very mature and a great many diagnostic, informatic, and simulational tools exist
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for understanding the course of epidemics, these tools are of little use prior to the onset of sus-

tained transmission [44]. The problem is further complicated by the wide variety of conditions

under which emerging pathogens arise and the knowledge gap that exists prior to emergence

concerning routes of infection, rates of transmission, mechanisms for persistence, roles of

social and commercial networks, and functions of transportation systems and cultural prac-

tices in the dissemination of novel pathogens [5, 45–47].

For systems in which transmission is relenting (R0 tending to 1 from above), documenting

paths to disease elimination is valuable and has been identified as a critical component of elim-

ination of several tropical diseases [48]. However, as with emergence scenarios, predicting

elimination has proven more formidable than anticipated, due to the different transmission

processes that dominate the final decline to extinction [49, 50]. A model-independent method

for anticipating disease emergence and elimination that may be applied to a wide range of sce-

narios would therefore be of considerable value. Based on the theory of critical slowing down,

we are now developing a family of online algorithms for early warning of infectious disease

emergence/re-emergence and leading indicators of elimination that take advantage of dynam-

ical properties that infectious disease systems exhibit as they approach and cross a tipping

point [29, 51]. In contrast to detection systems [52, 53], our theory (and associated toolkit)

aims to forecast epidemic transitions before they occur. Complementing the highly detailed

network and agent-based models developed by others [54, 55], these approaches exploit uni-

versal, qualitative properties of contagion systems [20]. While these methods are most infor-

mative when the transmission kinetics are sufficiently well understood, this is, reliable

mechanistic models may be fit [44, 56], the model-independent approach also works under

varying conditions of ignorance and uncertainty [31, 57].

References
1. Morens D, Folkers G, Fauci A. The challenge of emerging and re-emerging infectious diseases. Nature.

2004; 430(6996):242–249. https://doi.org/10.1038/nature02759 PMID: 15241422

2. Dayan GH, Quinlisk MP, Parker AA, Barskey AE, Harris ML, Schwartz JMH, et al. Recent resurgence

of mumps in the United States. The New England Journal of Medicine. 2008; 358(15):1580–1589.

https://doi.org/10.1056/NEJMoa0706589 PMID: 18403766

3. Rohani P, Drake JM. The decline and resurgence of pertussis in the US. Epidemics. 2011; 3(3-4):183–

188. https://doi.org/10.1016/j.epidem.2011.10.001 PMID: 22094341

4. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging

infectious diseases. Nature. 2008; 451(7181):990–993. https://doi.org/10.1038/nature06536 PMID:

18288193

5. Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction and prevention

of the next pandemic zoonosis. Lancet. 2012; 380(9857):1956–1965. https://doi.org/10.1016/S0140-

6736(12)61684-5 PMID: 23200504

6. Scheffer M. Critical Transitions in Nature and Society. Princeton, N.J.: Princeton University Press;

2009.

7. Kuehn C. A mathematical framework for critical transitions: Bifurcations, fast-slow systems and sto-

chastic dynamics. Physica D. 2011; 240(12):1020–1035. https://doi.org/10.1016/j.physd.2011.02.012

8. Dibble CJ, O’Dea EB, Park AW, Drake JM. Waiting time to infectious disease emergence. J Roy Soc

Interface. 2016; 13(123):20160540. https://doi.org/10.1098/rsif.2016.0540

9. Hohenberg PC, Halperin BI. Theory of dynamic critical phenomena. Rev Mod Phys. 1977; 49(3):435–

479. https://doi.org/10.1103/RevModPhys.49.435

10. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys Rev Lett. 2001;

86(14):3200–3203. https://doi.org/10.1103/PhysRevLett.86.3200 PMID: 11290142

11. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex net-

works. Rev Mod Phys. 2015; 87(3):925–979. https://doi.org/10.1103/RevModPhys.87.925

12. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and

Engineering. 1st ed. Cambridge, MA: Westview Press; 2001.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006917 May 8, 2019 12 / 14

https://doi.org/10.1038/nature02759
http://www.ncbi.nlm.nih.gov/pubmed/15241422
https://doi.org/10.1056/NEJMoa0706589
http://www.ncbi.nlm.nih.gov/pubmed/18403766
https://doi.org/10.1016/j.epidem.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22094341
https://doi.org/10.1038/nature06536
http://www.ncbi.nlm.nih.gov/pubmed/18288193
https://doi.org/10.1016/S0140-6736(12)61684-5
https://doi.org/10.1016/S0140-6736(12)61684-5
http://www.ncbi.nlm.nih.gov/pubmed/23200504
https://doi.org/10.1016/j.physd.2011.02.012
https://doi.org/10.1098/rsif.2016.0540
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevLett.86.3200
http://www.ncbi.nlm.nih.gov/pubmed/11290142
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1371/journal.pcbi.1006917


13. Van Kampen NG. Stochastic Processes in Physics and Chemistry. 3rd ed. Boston, MA: North Holland;

2007.

14. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. New York, NY:

Oxford University Press; 1992.

15. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton, N.J.: Prince-

ton University Press; 2008.

16. Alonso D, McKane AJ, Pascual M. Stochastic amplification in epidemics. J R Soc Interface. 2007;

4(14):575–582. https://doi.org/10.1098/rsif.2006.0192 PMID: 17251128

17. Anderson RM, May RM. Directly transmitted infections diseases: control by vaccination. Science. 1982;

215(4536):1053–1060. https://doi.org/10.1126/science.7063839 PMID: 7063839

18. Anderson RM, May RM. Vaccination and herd immunity to infectious diseases. Nature. 1985; 318

(6044):323–329. https://doi.org/10.1038/318323a0 PMID: 3906406

19. Strang G. Differential Equations and Linear Algebra. Wellesley-Cambridge Press; 2014.

20. O’Regan SM, Drake JM. Theory of early warning signals of disease emergence and leading indicators

of elimination. Theor Ecol. 2013; 6(3):333–357. https://doi.org/10.1007/s12080-013-0185-5

21. Bartlett MS. Deterministic and Stochastic Models for Recurrent Epidemics. In: Contributions to Biology

and Problems of Health. vol. 4. Berkeley, California: University of California Press; 1956. p. 81–109.

22. Dietz K. The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations. In: Berger

J, Bühler WJ, Repges R, Tautu P, editors. Mathematical Models in Medicine. vol. 11 of Lecture Notes in

Biomathematics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1976. p. 1–15.

23. Rohani P, Keeling MJ, Grenfell BT. The interplay between determinism and stochasticity in childhood

diseases. Am Nat. 2002; 159(5):469–481. https://doi.org/10.1086/339467 PMID: 18707430

24. Anderson RM, May RM. Vaccination against rubella and measles: quantitative investigations of different

policies. J Hyg (Lond). 1983; 90(2):259–325. https://doi.org/10.1017/S002217240002893X

25. Anderson RM, Grenfell BT, May RM. Oscillatory Fluctuations in the Incidence of Infectious Disease and

the Impact of Vaccination: Time Series Analysis. J Hyg (Lond). 1984; 93(3):587–608. https://www.

overleaf.com/8764360mwjyhgwyjtxt

26. Edmunds WJ, O’Callaghan CJ, Nokes DJ. Who mixes with whom? A method to determine the contact

patterns of adults that may lead to the spread of airborne infections. Proc Biol Sci. 1997; 264

(1384):949–957. https://doi.org/10.1098/rspb.1997.0131 PMID: 9263464

27. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Pat-

terns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008; 5(3):1. https://doi.org/10.1371/

journal.pmed.0050074

28. Broutin H, Viboud C, Grenfell BT, Miller MA, Rohani P. Impact of vaccination and birth rate on the epide-

miology of pertussis: a comparative study in 64 countries. Proc Biol Sci. 2010; 277(1698):3239–3245.

https://doi.org/10.1098/rspb.2010.0994 PMID: 20534609

29. Brett TS, Drake JM, Rohani P. Anticipating the emergence of infectious diseases. Journal of The Royal

Society Interface. 2017; 14(132). https://doi.org/10.1098/rsif.2017.0115

30. Black AJ, McKane AJ. Stochastic formulation of ecological models and their applications. Trends Ecol

Evol. 2012; 27(6):337–345. https://doi.org/10.1016/j.tree.2012.01.014 PMID: 22406194
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