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Our current pandemic has illustrated how infectious diseases, particularly respiratory 

transmitted infections, can have devastating effects on human life. These pathogens 

typically require close contact between a susceptible and infected host for successful 

transmission. As a result, the nature of contacts among populations of hosts is of 

extreme importance to the spread of disease. Traditional models are based on a 

compartmentalization of hosts according to their disease status (i.e., susceptible, 

infected, recovered) and make strong assumptions about homogenous mixing within the 

population. This assumption can be inappropriate for populations which have 

heterogeneous contact patterns. Heterogeneous contact patterns can be modeled using 

contact networks (graphs where nodes represent individuals and edges represent 

contacts which can facilitate disease spread). In recent years, many interesting 

hypotheses about contact networks and disease spread have been put forward in 

network and public health literature. In this dissertation, I use empirical data analyses 

and simulations to investigate these hypotheses in the context of two globally important 

pathogens, tuberculosis and COVID-19. In chapter 2, I investigate whether network 



 

 
 

centrality and mixing patterns are correlated with male-bias in tuberculosis in a large, 

social network from Kampala, Uganda. Next, in chapter 3, I focus specifically on the 

effects of preferential social mixing by sex and whether it can facilitate higher infection 

rates among males, as recently proposed in public health literature. In chapter 4, I 

investigate the effects of core-periphery contact networks on disease spread and 

discuss implications for populations with this contact structure. Lastly, in chapter 5, I 

model counter-factual scenarios of the spread of COVID-19 inside care, correctional, 

and meat-packing facilities without interventions and compare the distribution of 

outbreak sizes to the actual distributions and argue that interventions these facilities 

have taken have significantly mitigated spread. The work in this thesis is unique because 

it tests theories derived from analytical methods or proposed in the public health 

literature using simulations and data analyses. This work extends our understanding of 

how human contact patterns alter disease spread, provides general insights into 

infectious disease ecology, and has practical public health recommendations.  
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INTRODUCTION 

 
Background 

Disease ecology is motivated by the need to understand the spread and 

persistence of infectious diseases, which impose burdens on human and animal 

populations alike. Many infectious diseases are spread through direct contact of 

infectious and susceptible hosts (Hay et al., 2013). Consequently, epidemic 

outcomes are inherently tied to the organization of interactions among hosts. 

These interactions and resulting transmission from infected to susceptible hosts 

can be dependent on host parameters -- age, sex, and contact rate -- and 

disease parameters -- susceptibility to disease, infectiousness, and recovery rate 

(Anderson & May, 1991; Baggaley et al., 2010; Horton et al., 2020; Mossong et 

al., 2008). The theoretical framework for mathematical models that explore the 

consequences of heterogeneities in host and disease parameters on epidemics 

was pioneered in the twentieth century with the work of Hamer (1906), Ross 

(1908), Kermack and Mckendrick (1927) and Anderson and May (1992). 

Traditional transmission models start with the basic premise that a 

population can be divided into a set of distinct classes depending on their 

disease status. The simplest of these models classifies individuals as susceptible 

(S), infectious (I), or recovered (R) and is called an SIR model. All individuals in 
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the population start in the susceptible class, where they can be infected by the 

disease at rate 𝜆. Once infected, individuals can recover at rate 𝛾. Recovered 

individuals are assumed to be fully immune for life. The familiar SIR model can 

be described more precisely with a system of differential equations, one for the 

proportion of individuals in each disease class:  

𝑑𝑆
𝑑𝑡 = −𝜆𝑆 

𝑑𝐼
𝑑𝑡 = 𝜆𝑆 − 𝛾𝐼 
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 

 

 Many biologically motivated modifications can be made to this basic 

framework, involving the further subdivision of the S, I, and R classes to reflect 

either more complex host (e.g., subgroups based on age and sex (Hethcote, 

2000)) or disease traits (e.g., a pathogen with an incubation period (Anderson, 

1988)). Birth and death rates can also be introduced for diseases where 

progression spans timescales over which these demographic changes are 

important. Although the differential equation SIR model and its extensions have 

had a long and successful history, it is critically dependent on the assumptions of 

mass-action and homogenous mixing within compartments. In recent years, 

network analytic approaches have gained momentum as they capture the 

variation in individual behavior as well as the local, and global patterns of 

contacts present in host populations (Meyers et al., 2005; Keeling & Eames, 

2005; Newman et al., 2006; Bansal et al., 2007; Craft 2015).  
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Multiscale features of contact networks and implications for disease spread 

In network models, nodes that interact with each other are linked by 

edges. Nodes can represent countries, cities, or locations, but in this dissertation, 

I consider nodes to be individual hosts. Formally, a contact network explicitly 

represents interactions among hosts that can mediate disease spread. We 

contrast this with social networks which include interactions among hosts which 

cannot mediate disease spread (e.g., online communication). Node degree is the 

number of edges attached to it (i.e., number of contacts) and is one measure of a 

node’s centrality within a network. Other measures of node centrality include 

betweenness, closeness, and eigencentrality and each measures a node’s 

“importance” according to different criteria (Christley et al., 2005). Separate 

statistics describe network-level features, such as the mean degree of a network. 

These different scales of network structure, spanning node to network-level 

features, can affect disease spread (Figure 1.1).  In this section, I review how 

disease spread is affected by multiple scales of network structures and then 

discuss emerging hypotheses and problems that this dissertation addresses.  

At a local scale, nodes with higher network centrality can be infected 

faster and more often than less central nodes (Christley et al., 2005). This idea 

has been investigated in a diverse range of infectious diseases including 

influenza (Christakis & Fowler, 2010) and HIV (Rothenberg et al., 1995) in 

human populations and Mycobacterium bovis in captive possums (Corner et al., 

2003). In these examples, centrality measures were used to identify which 
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individuals would be pivotal to the spread of infection. In a study of influenza in a 

college population, infections among more central individuals were detected 

nearly two weeks before less central individuals (Christley et al., 2005). In 

another study, predictions that more central individuals would be infected more 

often and faster than less central individuals were confirmed by the experimental 

introduction of M. bovis into a possum population (Corner et al., 2003). 

Generally, previous studies of network centrality and infection focused on 

outbreaks in closed populations of mostly susceptible individuals. An open 

question I address is whether the same expectations regarding centrality and 

infection apply to endemic infectious diseases which do not spread amongst a 

fully susceptible network of individuals as invading influenza strains or sexually 

transmitted infections.  

In addition to local statistics, a remarkable number of studies have 

focused on characterizing how disease spreads in idealized networks with 

different degree distributions, clustering patterns, and other network-level 

structures, such as lattice grids (Barbour & Mollison, 1990; Pastor-Satorras & 

Vespignani, 2001; Shirley & Rushton, 2005). Researchers have paid special 

attention to small-world networks (Watts & Strogatz, 1998) – characterized by 

high levels of local clustering and global connectivity – and scale-free networks 

(Barabasi & Albert, 1999) – defined by having degree distributions that follow a 

power-law giving rise to a small fraction of highly connected nodes. To study the 

effects of scale-free and small-world structure on disease spread, researchers 
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compare outbreaks on “null” networks which can be lattice, regular, or Poisson 

(also called Erdos-Renyi) random graphs (Bansal et al., 2007). Modelers have 

long known that the epidemic threshold (i.e., the critical transmission rate above 

which disease may spread and persist) varies across these archetype networks. 

For example, the epidemic threshold is low, or non-existent, in scale-free 

networks meaning outbreaks are always possible (Pastor-Satorras & Vespignani, 

2001). More generally, as variation in contact rates (i.e., degree distribution) 

increases, the epidemic threshold decreases (Woolhouse et al., 1997) and as 

clustering increases, the final outbreak size decreases (Badham & Stocker, 

2010). Real-world contact networks are composed of various idealized network 

features. For example, a well-known study found human mobility networks to 

follow scale-free distributions while social networks followed small-world 

distributions (Eubank et al., 2004). However, identifying which of these idealized 

networks resemble specific populations given incomplete sampling is a 

challenging methodological area that I tackle in this dissertation.  

In between local and network-scale network structures are those at the 

“meso-scale” (Rombach et al., 2014) which describe organization of groups of 

similar individuals within the network. The most common meso-scale statistic is 

network modularity (i.e., assortativity), which is a measure of how often a 

network’s nodes attach to others in the same group (Newman, 2006). Modularity 

can reduce the final outbreak size for immunizing infectious diseases (e.g., 

measles), but may only play a large role when it is relatively strong (Sah et al., 
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2017; Salathé & Jones, 2010). For example, an analysis of animal social 

networks found that most animal populations are not modular enough to have 

protective effects of limiting spread (Sah et al., 2017). This study did, however, 

show that intermediate levels of modularity could affect timing of infection spread 

to different groups highlighting how modularity may alter individual likelihood and 

timing of infection based on group membership. In human contact networks, 

there are a number of subtle, modular patterns proposed to affect the distribution 

of infections across groups including age, race, and sex-assortative mixing 

patterns. Patterns of age-assortative mixing are the most widely studied; these 

mixing patterns are important for explaining incidence and mortality rates for 

pathogens including measles (Schenzle, 1984), pertussis (Rohani et al., 2010), 

and tuberculosis (Arregui et al., 2018). Patterns of racial assortativity in sexual 

contact networks have been identified in models to explain why Black 

populations of men who have sex with men have a higher prevalence of HIV 

(Mustanski et al., 2015), but other modeling studies have found factors such as 

the care continuum to be more important (Goodreau et al., 2017). Lastly, 

preferential mixing in social contact networks have been proposed to drive sex-

disparities in infectious diseases (Horton et al., 2020), which I test with a 

modeling study in this dissertation. In addition to modularity, I explore the disease 

consequences “core-periphery” networks, another meso-scale structure.  
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Two Study Systems 

Social contact networks, tuberculosis, and sex-disparities in infection 

Tuberculosis (TB) is a suitable disease for studying the effects of network 

centrality and social network assortativity on prevalence of endemic diseases. It 

is endemic in many low-income countries and up to one-quarter of the world’s 

population has latent tuberculosis infection (Dye, 2015; Houben & Dodd, 2016). 

As a respiratory transmitted infectious disease, it relies on contact networks, 

spreading more often during prolonged, intimate, frequent contacts (Castellanos 

et al., 2020; Yates et al., 2016). Indeed, having a household member with TB is 

the largest risk factor for getting infected in endemic settings despite most 

transmission being community-spread (reviewed in (Yates et al., 2016)), 

underscoring why contact tracing remains an important but insufficient prevention 

strategy in many places. In addition, infection risk is also strongly related to 

factors including sex, age, co-infections, and cigarette smoking, among others 

(Dye, 2015). Sex as a risk factor for TB is particularly not well-understood and 

part of this dissertation focuses on understanding whether and how contact 

patterns help explain sex-disparities in prevalence. To investigate this, I use 

network models and data analyses to examine mechanisms for explaining sex-

disparities in TB which fall into “biological” and “social” categories. Biological 

mechanisms for male-bias of TB typically discuss higher male susceptibility and 

transmissibility (Nhamoyebonde & Leslie, 2014). Social factors are generally 

discussed in terms of gender roles and preferences in mixing patterns driving 
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higher male exposure to TB cases through work outside their home, travel, or 

mixing with other men (Guerra-Silveira & Abad-Franch, 2013). These suspected 

differences in gender roles and preferences might manifest in social contact 

networks as higher male centrality and sex-assortativity. The overarching 

question for Chapters 2 and 3 is how social and biological factors may combine 

to explain sex-disparities in TB.   

In Chapter 2, I characterized social factors that could drive sex-disparities 

in TB by comparing patterns of centrality and sex-assortativity among TB cases 

and males in Uganda, where TB is endemic (Organization, 2018). I used data 

from a large, social network survey of recently diagnosed cases and community 

controls. I estimated various centrality statistics for TB cases and controls 

including degree, closeness, betweenness, eigencentrality, and network distance 

to other TB cases. Despite there being correlations between centrality and 

infection in other respiratory transmitted diseases and in past studies of TB, 

testing this correlation for human TB and in this population is novel. The endemic 

nature of TB in Kampala could mean the remaining susceptible individuals, from 

which recently diagnosed cases predominantly emerge in high incidence 

countries (Cohn & O’Brien, 1998), are less central than the general population 

(Ferrari et al., 2006). To understand whether network centrality could help 

explain sex-disparities in TB, I compared centrality statistics between males and 

females. To understand how underlying network structures and network sampling 

protocol may affect estimates of centrality, I conducted multiple simulation 
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studies. Finally, to quantify assortative mixing patterns, I estimated proportion of 

within-sex, between-sex, and age-assortative contact stratified by disease status 

and sex. Understanding whether TB cases and males are more central in their 

networks and whether TB cases differ in preferences in social contacts has 

implications for case-finding and prioritization of contact tracing.  

The subject of Chapter 3 is comparing the effects of social and biological 

factors on sex-disparities in TB. Specifically, I investigated whether sex-

assortative social interactions are strong enough to contribute to sex disparities 

of TB or if biological differences in sex-traits are needed to explain observed 

male-bias. Hypothesized biological mechanisms for male-bias in TB are primarily 

related to a suspected higher male susceptibility to infection due to genetic 

(chromosomal genes), hormonal (effects of sex-hormones), or behavioral 

(smoking) factors (Nhamoyebonde & Leslie, 2014). Other than susceptibility, 

lesser studied biological mechanisms that could plausibly lead to male-bias 

include higher male transmissibility (Dodd et al., 2016) or sex differences in the 

disease progression rates (Holmes et al., 1998). Each of these different sex-traits 

-- susceptibility, transmissibility, and infectious period -- could lead to male-bias 

in TB. I used mathematical models of disease spread on networks to examine 

how sex-disparities in infection could emerge in the presence of each of these 

sex-traits with varying levels of network assortativity. I was also interested in 

understanding factors that allow subtle patterns in assortative contact patterns to 

shape epidemic outcomes. Specifically, I investigated whether the unique life 
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history of human TB, with its long and variable latent period and slow rates of 

transmission, increases the effects of sex-traits and assortative mixing on male-

bias. To study this, I compared simulations of models with multiple transmission 

patterns (SIR, SLIR, SIRS, and SLIRS) and transmission rates. Although this 

study focused on TB, many infectious diseases are male-biased and most 

populations have social mixing patterns marked by sex-assortativity. Results 

from this study thus highlight how behavior and contact rates amplify the 

consequences of sex-differences in immune investment.  

Contact network structure, interventions, and spread of SARS-CoV-2  

Our current pandemic of Coronavirus Infectious Disease (COVID) is 

illustrating how contact patterns and human behavior alter spread and prevention 

of infectious diseases. On December 31st, 2019, China first reported that a 

cluster of patients with pneumonia-like symptoms in Wuhan, Hubei Province 

(WHO Archived Timeline). Subsequent investigation identified severe acute 

respiratory syndrome coronavirus-2 (SARS-Cov-2) as the causative agent. 

Chinese authorities ordered multiple containment measures in January 2020, but 

the virus quickly spread globally throughout the winter and spring of 2020. SARS-

Cov-2 spread so widely in the United States that it now accounts for one-quarter 

of all cases (nearly 5 million) and 22% of all deaths (160,000) despite comprising 

only 4% of the world’s population (WHO Situation Report). Cases and deaths in 

the US have not been distributed randomly but early on were concentrated in 

populations that live or work nursing homes (Barnett & Grabowski, 2020), prisons 
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(Hawks et al., 2020), and cruise ships (Emery et al., 2020) which have highly 

heterogeneous contact patterns. I was motivated to study how contact patterns 

specific to these settings may affect spread of infectious diseases.  

In contrast to other high-transmission settings which are thought to be 

more well-mixed (e.g., markets, worship settings, concerts, rallies, sports games, 

and funerals), interactions in nursing homes, prisons, and cruise ships vary 

greatly depending on the roles individuals play in the population. For example, on 

board the Diamond Princess Cruise Ship during its 3-week quarantine, crew 

workers were largely unconfined whereas passengers rarely left their cabins. 

This outbreak resulted in nearly 700 passengers being infected, 9 deaths, and an 

estimated initial R0 of 9.3 (Emery et al., 2020). Whether this quarantine, and 

contact structure, prevented spread is unknown but clearly highlights the need to 

understand spread of disease in closed settings with structured populations. In 

addition to cruise ships, nursing homes and prisons have instated similar 

isolation policies for residents during lockdown, who then form a sort of 

periphery. In both nursing homes and prisons, staff maintain their duties and may 

serve as the only daily interactions for residents. Together, we hypothesized, 

staff and resident interactions form a sort of “core-periphery” contact network in 

these settings. 

In Chapter 4, my goal was to understand how contact networks structured 

into densely connected “cores” and sparsely connected “periphery” nodes affect 

spread of infectious diseases. To do this, I simulated core-periphery contact 
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networks, described their unique structural properties, and compared disease 

spread on core-periphery networks with homogenous networks. Specifically, I 

examined the probability distribution of outbreak sizes, and compared when the 

probability distribution transitions from unimodal, with rare large outbreaks, to 

bimodal, with frequent large outbreaks in core-periphery and homogenous 

networks. I additionally characterized various epidemic dynamics on core-

periphery networks that affect containability including the peak timing, peak size, 

and outbreak duration. Lastly, I quantified estimation biases for R0 in core-

periphery networks, which may be important to understand for accurate 

estimations of vaccination thresholds required for herd immunity in these 

vulnerable populations. The effects of core-periphery network structure on 

disease dynamics represents a gap in the contact network epidemiology 

literature and improved understanding of disease spread in these networks may 

inform interventions based on modifying contact network structures.  

In Chapter 5, I reasoned that the outbreak size distribution of COVID clusters in 

US hotspots might resemble distributions of outbreak sizes on core-periphery 

networks, unless interventions facilities took substantially curbed spread. I 

modeled the unmitigated spread of COVID in core-periphery networks under a 

variety of scenarios, including different number of introduced infected individuals 

and varying reproductive ratios. I compared simulated distributions to outbreak 

size distributions in US long-term care facilities, correctional facilities, and food 

processing facilities. To understand how interventions may have altered the 
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spread of COVID in these facilities, I further characterized the distribution of 

outbreak sizes in care facilities over time and described differences in outbreak 

sizes when facilities had access to two different interventions. Understanding 

whether and how interventions have mitigated spread in vulnerable populations 

is important as the current pandemic is far from over. 

Intellectual Significance  

This dissertation analyzes when individual-, group-, and population-level 

patterns of human mixing affect pathogen spread and therefore provides 

theoretical insight into when contact patterns could be useful for accurately 

predicting incidence and developing control strategies. In the second chapter, I 

asked whether network centrality is higher among recently diagnosed, active TB 

cases than community controls in an endemic population. While previous studies 

focused on network centrality and infection in mostly susceptible populations, 

nearly half of Kampala residents have latent TB infection and the remaining 

contact network of susceptible individuals may be different from the contact 

network overall. Therefore, this analysis elucidates how population-level 

differences in disease endemicity control when individual-level variation in 

centrality is predicted to affect infection risk. I additionally determined whether 

males are more central in their contact network than females and whether there 

are differences in mixing patterns by sex that could help explain male-bias in TB 

notifications, a hypothesis presented in a recent review (Horton et al., 2020). 

Understanding social factors leading to increased infections among men has 
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implications for improving models of disease spread and design of new control 

strategies. In the third chapter, I further investigated the hypothesis that sex-

assortative mixing patterns drive sex-disparities in infectious diseases using a 

mathematical model and simulations of disease spread on networks. This 

chapter highlights disease-specific factors that make mixing patterns more 

important for predicting disease incidence and how behavior can amplify the 

consequences of sex-differences in immune investment. In the fourth chapter, I 

investigated effects of core-periphery group structure on infectious disease 

dynamics, which is a current gap in the extensive contact network epidemiology 

literature. Specifically, I compared the outbreak size distribution in core-periphery 

and homogenous networks and studied the pathogen characteristics that 

increase the likelihood of large outbreaks in core-periphery networks. Lastly, in 

the fifth chapter, I reasoned that the distribution of outbreak sizes in COVID19 

hotspots should resemble simulated outbreak size distributions, unless 

interventions have significantly mitigated spread. To test this, I compared 

simulated and actual outbreak size distributions in United States care, 

correctional, and food processing facilities. Understanding whether interventions 

dampened large outbreaks of COVID19 in vulnerable populations is important for 

future control programs. Throughout, I highlight why studying human mixing 

patterns improves our understanding of disease spread -- a central goal of 

disease ecologists.  
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Tables and Figures 

 
  
 

Network features across multiple scales of organization and those that measure 
a node’s position or centrality in the network such as node degree. (A) Higher 
centrality nodes are generally expected to become infected faster and more often 
than lower centrality nodes. Meso-scale statistics, such as assortativity, describe 
the organization of nodes into groups. (B) With high levels of assortativity, 
outbreaks can be reduced in size and (C) group membership may affect the 
probability of a node getting infected. Finally, global features are summary 
statistics of the network as a whole such as mean degree, the degree 
distribution, and the clustering coefficient. (D) As network connectivity increases, 
outbreak size increases. Generally, node-level statistics determine “who gets 
infected” while global features determine “how many individuals get infected”. 
Meso-scale statistics may affect both “who” and “how many individuals” get 
infected.  
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Figure 1.1 Multi-scale network structure and disease spread. 
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Abstract 

Globally, Tuberculosis disease (TB) is more common among men than 

women. Recent research proposes that differences in social mixing by sex could 

alter infection patterns in TB. We examine evidence for two mechanisms by 

which social-mixing could increase men’s contact rates with TB cases. First, men 

could be positioned in social networks such that they contact more people or 

social groups. Second, preferential mixing by sex could expose men to more TB 

cases. We compared the networks of male and female TB cases and controls 

living in Rubaga Division in Kampala, Uganda.  Specifically, we estimated their 

node position (including distance to TB cases, node degree, betweenness, and 

closeness) and assortativity patterns (mixing with adult males, females, and 

children inside and outside the household). The observed network consisted of 

11,840 individuals. There were few differences in node position by sex. We found 

distinct mixing patterns by sex and TB disease status including that TB cases 

having a proportionally more adult male contacts and fewer contacts with 

children. This analysis uses a network approach to study which social mixing 

patterns are associated with TB disease. Understanding these mechanisms has 

implications for designing targeted intervention strategies in high-burden 

populations.   

Introduction 

Although tuberculosis (TB) is both a treatable and preventable disease, it 

remains one of the leading causes of death worldwide. Each year an estimated 1 
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million people die among 9 million new TB cases (WHO, 2018). The global 

burden of TB is even greater as 25% of the world’s population has a latent 

infection with M. tuberculosis (Mtb) and is at risk of progressing to active disease 

(Horton et al., 2016). Notification of TB disease is more common in men than in 

women with an average of 1.8 cases notified among men for each woman 

globally in 2017 (WHO, 2018). One explanation for the excess of cases among 

men is that they have greater access to health care than women. Although this 

may contribute to disparity among men and women in some places, TB 

prevalence surveys, which control for access to care, find the same male-biased 

pattern (Borgdorff et al., 2000). Given that the current paradigm for TB control 

depends on case detection, understanding how and why TB disease differs by 

sex is critical to informing control programs. 

Many explanations for male-bias in TB propose that men have greater 

susceptibility to infection or more frequent opportunities for exposure (Neyrolles 

& Quintana-Murci, 2009; Nhamoyebonde & Leslie, 2014). A number of factors 

have been advanced as possible mechanisms for heightened susceptibility in 

men. In most countries, men smoke more cigarettes than women, and per capita 

smoking rates explain roughly one-third of the variation in country-level male-bias 

in case reports (Watkins & Plant, 2006), perhaps due to toxic lung injury and 

reduced immune cell function (Arcavi & Benowitz, 2004) leaving them more 

susceptible to infection. Alcohol use is also identified as a risk factor for TB 

disease as it may have immunosuppressive effects (Lönnroth et al., 2008). 
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These behavioral factors and other hormonal and physiological factors likely play 

a role in determining sex-specific susceptibility to Mtb (Neyrolles & Quintana-

Murci, 2009; Nhamoyebonde & Leslie, 2014), though we do not know the 

combined extent to which they explain male-bias across populations nor do we 

know the full spectrum of possible mechanisms.  

Apart from susceptibility, men may be exposed to undetected, infectious 

TB cases more often than women. This exposure may be determined in part by 

the social role men fill and how social roles influence mixing with others in their 

community (Nhamoyebonde & Leslie, 2014). For instance, in Uganda adult men 

travel more often than women who mostly identify as housewives (Waroux et al., 

2018); the mobility of men may lead to higher exposure rates due to their 

centrality within social networks. Alternatively, exposure to TB cases could be 

perpetuated because men preferentially interact with other men who are more 

likely to be infected than women (Dodd et al., 2016). Sex-assortativity could 

further magnify spread among men if men were more likely than women to 

transmit infection to their close contacts, as some household contact studies 

have found (Hector et al., 2017). Compared with biological differences in 

susceptibility, few studies have directly examined whether differences in network 

centrality and mixing patterns by sex can account for the predominance of 

tuberculosis incidence among men. 

To examine the role of network position and social mixing patterns on TB 

by sex, we performed a cross-sectional study of a large social network in 
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Kampala, Uganda, that included component social networks of both TB cases 

and appropriate controls in an area endemic for TB. In this large network, we 

determined whether TB cases were more central in their networks than index 

controls (Christakis & Fowler, 2010; Kawatsu et al., 2015) and whether men were 

more central than women in their social networks. For mixing patterns, we 

assessed assortativity by sex stratified by TB disease.  

Methods 

Data collection  

We performed a cross-sectional, social network survey from 2012 to 2016 

in the Rubaga Division of Kampala, Uganda. Rubaga is an urban area where 

approximately 300,000 people reside. The burden of TB disease in Uganda is 

one of the highest in the world (WHO, 2018) and, in Rubaga Division, nearly one 

half of the population may be latently infected (Kizza et al., 2015). This area’s 

urban landscape, high male:female case bias (2.4:1) (WHO, 2018), and high 

prevalence of infection make it a relevant place to study the factors affecting TB 

spread in endemic populations. 

To characterize the social networks of people living in Kampala, Uganda, 

we recruited 123 index cases and 124 index controls without TB and then 

delineated their social networks through systematic interviews. The study 

enrolled sputum-smear positive or culture-confirmed pulmonary TB cases who 

presented to the National Control Programme at Mulago Hospital Complex or 

were found through active case-finding of reported contacts. Index controls were 
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recruited by frequency-matching index cases according to age-group, sex, and 

parish (proxy for residence). For both index cases and controls, the inclusion 

procedures for enrollment were identical: index participants had to be 15 years or 

older and reside primarily in Rubaga. 

The social networks were ascertained in a two-step process. In the first 

step, index participants listed members of their households and all individuals 

living outside their household with whom they had close contact, defined as 

being within talking distance for more than 4 hours during one or more contact 

episodes. These first-level contacts were then traced and evaluated for signs of 

latent TB infection or active TB disease. In the second step, first-level contacts 

were asked to list their household and extra-household contacts (i.e., second-

level contacts of the index participants). Unless there was a suspicion of active 

TB, field nurses did not trace the second-degree contacts. This sampling 

methodology was an extended form of egocentric sampling, which we will refer to 

as “second-level egocentric sampling” in the remaining sections. Second-level 

egocentric sampling differs from classic egocentric network sampling in the 

additional layer of contacts collected (Figure 2.1).  

Social network analysis 

We described the large-scale features of the social network including its 

size (number of members), component distribution (number of sub-networks 

connected to each other through common contacts), and mean degree (average 

number of contacts per individuals). Additionally, we also compared the degree 
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distribution of index participants, first-level, and second-level contacts and used a 

two-way ANOVA to compare the degree distribution of index individuals and that 

of first-level contacts. We compared estimates of node position among index 

participants by index type (TB case or control) and sex. Centrality statistics 

included node degree, betweenness (Brandes, 2001), and closeness (Freeman, 

1979)  (definitions in Table 2.1). To determine whether men were more clustered 

with TB cases than women, we calculated the network distance to a TB case. We 

used two-way ANOVAs to determine whether dependent variables were 

associated with independent variables sex (male or female) and index type (TB 

case or control). 

To assess patterns of mixing by sex and age in the network, I compared 

the proportion of contacts occurring within-sex, between-sex, and with children in 

the network for index individuals. I additionally quantified sex-assortative mixing 

with the assortativity coefficient (Newman, 2003). These coefficients are based 

on the matrix, 𝐸!",  describing the fraction of all edges that connect a node of type 

𝑖 to type 𝑗, such that the diagonal 𝐸!! represents within-group edges, the off-

diagonal represents between-group edges, and ∑ 𝐸!"!" = 1. If 𝑎! = ∑ 𝐸!""  (i.e., the 

proportion of all edges connecting to nodes in each group 𝑖)  and the network is 

undirected, the assortativity coefficient is defined as 𝑟 = ∑ $!!𝒊 %∑ &!
#

𝒊
𝟏%∑ &!

#
𝒊

. When edges 

occur only between individuals in the same group, only the diagonal of the matrix 

𝐸!" will be non-zero, e.g., 𝐸!" = 10.5 0
0 0.55, and it is straightforward to see that   
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𝑟 =
(0.5 + 	0.5) − (0.5( + 0.5()

1 − (0.5( + 0.5() = 1, 

representing perfectly assortative mixing. In contrast, when edges are 

concentrated between groups, the diagonal of the matrix will be zero, e.g., 𝐸!" =

1 0 0.5
0.5 0 5 and the assortativity coefficient is 

𝑟 =
0 − (0.5( + 0.5()
1 − (0.5( + 0.5() = −1, 

representing perfectly disassortative mixing. As a last example, the matrix 𝐸!" =

10.27 0.24
0.24 0.255 represents approximately random mixing. Here, 51% of edges 

attach to group 𝑖 and 49% attach to group 𝑗	. The assortativity coefficient for this 

matrix illustration would be  

𝑟 = (*.(,-*.(.)%(*..0#-*.12#)
0%(*..0#-*.12#)

= *..(%*..**(
0%*..**(

= 0.04, 

which confirms approximately random mixing between these two groups.  

Sensitivity analyses 

I examined the sensitivity of estimated centrality statistics to biases that 

might be introduced by egocentric network sampling and variation in the 

underlying network structure (small-world and scale-free) and population size 

(N=50,000, 75,000, 100,000, 125,000 and 250,000). These population sizes 

were chosen to represent a sub-population of the Rubaga Division in Kampala. 

Specifically, I randomly selected 240 nodes from each unsampled network and 

estimated their betweenness, closeness, and degree statistics (true centrality 
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statistics). Then, I sampled each network with one of three types of egocentric 

network sampling (Figure 2.1) using the 240 nodes as egos. Lastly, I estimated 

the betweenness, closeness, and degree from the sampled network (sampled 

centrality statistics). For each set of network structures (small-world and scale-

free), sizes, and sampling types, I calculated the correlation between the true 

node centrality and sampled node centrality estimates. To understand how the 

Kampala network related to simulated networks, we calculated the clustering 

coefficient (i.e., the probability that neighbors of a node are also connected 

(Wasserman & Faust, 1994)) and fit to a power-law degree distribution (Clauset 

et al., 2009) because small-world networks are characterized by high clustering 

coefficients and scale-free networks by a power-law degree distributions 

(Barabasi & Albert, 1999; Watts & Strogatz, 1998). We performed a second 

sensitivity analysis focusing on estimates of the assortativity coefficients. We 

simulated networks with varying levels of assortativity, randomly chose 240 

nodes to represent egos, and sampled the network with a second-level 

egocentric design. We then calculated the correlation between sampled 

assortativity and true assortativity of the underlying network to assess robustness 

to egocentric sampling. Full details of these analyses are provided in Appendix I. 

All network analyses and simulations were completed in R (4.0.0) using the 

package igraph (Csardi & Nepusz, 2006). R scripts for sensitivity analyses are 

available on https://github.com/DrakeLab/miller-tb-centrality.  
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Ethics considerations  

The study was approved by the University of Georgia Institutional Review 

Board, the Higher Degrees Research and Ethics Committee at Makerere 

University School of Public Health, and approved by the Uganda National 

Council for Science and Technology. 

Results 

Overall network structure 

We recruited 247 index participants (123 cases, 124 controls) of which 

169 were men and 78 were women. Index participants listed 2,418 contacts (first-

level contacts) of which 1,930 agreed to enroll in the study and subsequently 

identified 9,175 second-level individuals. Index participants identified on average 

two more contacts than first-level individuals (10.4 vs. 8.2) (Mann-Whitney U-test, 

p<0.0001). Thus, 2,177 individuals (index participants and enrolled first-level 

individuals) reported 14,307 edges. Control indexes were almost twice as likely 

to be in monogamous or polygamous relationships than TB cases (𝜒(=13.9, 

df=1, P=0.0002) (Table 2.2). Male index participants were six years older than 

female index participants on average (F1, 246=26.8, P=4.68⋅ 10%,) (Table 2.3). 

The resulting network of 11,840 individuals represented 6,507 men, 5,333 

women, 9,720 adults (at least 15 years old), and 2,002 children less than 15 

years old (age was not identified for 118 individuals). Average overall degree, 

including second-level contacts, was 2.4 (±0.03, SE). Despite low connectivity of 

second-level contacts, all 247 index networks were distributed in one of only 47 
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network components after joining networks with common contacts. One 

component connected 9,974 (84%) individuals and 187 (75%) index participants 

(102 controls and 85 TB cases).  

Node position of index individuals 

In our analyses of network centrality, there was little variation in node 

position among index participants stratified by type (Table 2.2) and sex (Figure 

2.2, Table 2.3). Network betweenness was the only node position metric that 

differed between index cases and their controls, whereby controls had higher 

betweenness than cases (F0,045 = 12.73, P= 0.0005). TB cases tended to have a 

higher degree distribution with their first-level contacts than index controls (10.7 

versus 10.2, Table 2.2); index males also tended to be closer in network distance 

to other index cases than were females (F0,045 = 2.78, P= 0.096). Closeness of 

index participants was not higher among TB cases compared with index controls 

nor among men compared with women. Since a higher proportion of controls 

were in monogamous or polygamous relationships, we stratified network position 

statistics by relationship status (Table S1.1). There was no difference in network 

position (degree, betweenness, closeness, or distance) between index 

participants that were single and those in a relationship.   

Social mixing patterns of index individuals 

The distribution of contacts reported by index participants indicated 

preferential mixing by sex and higher levels of contact between women and 

children than men and children (Figure 2.3, Tables 2.2 and 2.3). Across the 
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observed network, same-sex edges were almost twice as common as different-

sex edges (9,079 vs. 5,228), with a sex-assortativity coefficient of 0.26 

(±0.01,	SE). Of the contacts reported by index participants, the proportion that 

were adult men varied by index sex (F1, 246=37.1, P=4.23⋅ 10%2) and index type 

(F1,246=12.3, P=0.0006) with TB cases and men having higher proportion of their 

reported contacts with men. The proportion of contacts with adult women varied 

by index sex (F1, 246=4.213, P=0.04) but not index type. Overall, index women 

reported approximately two times more contact with children than index men 

(0.30 and 0.15, respectively; F1, 246=36.5, P=5.67⋅ 10%2). In addition, index 

controls reported a higher proportion of contacts with children than TB cases 

(0.33 vs. 0.26; F1, 246=11.4, P= 0.0008). Relationship status was not associated 

with any mixing variables (Appendix I, Figure S1.1).   

Sensitivity analyses  

Overall, estimates of node centrality statistics were affected by network 

type, sampling type, and underlying network size (Figure 2.4). When a scale-free 

network was sampled, all centrality estimates from egocentric samples were 

correlated with the true centrality in second-level samples (𝜌 > 0.4), indicating 

some identifiability of central individuals. In contrast to scale-free networks, when 

sampling from small-world networks, correlation coefficients were lower 

indicating less identifiability of central individuals. The social network we 

analyzed had low clustering  (C = 0.1)	and a degree distribution consistent with 

either a power-law (i.e., matching that of scale-free networks) or log-normal 
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distribution (i.e., sum of multiple normal-distributions), but we could not 

distinguish between these two distributions (Appendix I, Figure S1.1, S1.2). In 

general, second-level egocentric sampling, as was used in this study, was 

superior to ego-only and first-level egocentric sampling. Estimates of node 

position from egocentric samples were not highly sensitive to the range of 

network sizes. In a separate sensitivity analysis of network assortativity, 

estimated assortativity from egocentric networks was highly correlated (𝜌 =

0.999) with true assortativity of underlying networks (Appendix I, Figure S1.3).  

Discussion 

Social contact networks can alter transmission patterns of infectious 

diseases (Arregui et al., 2018; Mossong et al., 2008; Rohani et al., 2010). Here, 

we analyzed the structure of a large social network in an urban population in 

Kampala, Uganda, to examine the male-bias of TB disease. We observed 

assortative mixing patterns that differed by sex and age category. We also found 

subtle yet important differences in the social networks of TB cases and 

community controls that may account, in part, for the male predominance of TB 

disease.  

Within the 247 individual ego-centric social networks for each index (both 

case and control), we found two inter-related assortative mixing patterns by index 

type and sex. In the first pattern, regardless of index type, men listed a greater 

proportion of men in their networks, and women listed a greater proportion of 

women. In the second pattern, stratified by sex, male and female TB index cases 
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both listed a greater proportion of male network members. This first pattern of 

sex assortment is a common feature of social networks across many different 

cultures (Dodd et al., 2016; Horton et al., 2020; Waroux et al., 2018). The 

preferential assortment of TB cases with men, however, is a new finding that has 

implications for transmission of M. tuberculosis. It suggests that there may be 

unknown component networks comprising mostly men that perpetuate 

transmission of TB in the community. This is an interesting extension to the idea 

that that men are source cases to a disproportionate amount of new infections 

(Dodd et al., 2016).  

When we stratified further by household and extra-household contacts, we 

found TB cases, both male and female cases, reported a lower proportion of 

household contacts compared with index controls. This finding demonstrates that 

extra-household mixing within a network may be an important path for 

transmission of M. tuberculosis in the community and is consistent with current 

models of TB transmission that indicate extra-household transmission 

predominates (Kizza et al., 2015; Martinez et al., 2017; Verver et al., 2004). All 

together, these observations suggest that the sex-specific social mixing, which is 

consistently found among adults in many populations (Horton et al., 2020), may 

amplify exposure among men. 

When considering category of age, another pattern of assortative mixing 

emerged. We found that male indexes had proportionally fewer contacts with 

children than female indexes, consistent with other studies of age- and sex-
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specific contact patterns observed in Zambia and South Africa (Dodd et al., 

2016). Further, within the household, one-quarter to one-third of contacts are with 

children, thereby creating an environment of intense transmission to children who 

likely have fewer community interactions. This finding corroborates the known 

risk of household infection among children (Cruz & Starke, 2010). 

As for network position, we found that TB index cases had lower 

betweenness-centrality than index controls, whereas degree and closeness 

centrality were similar for both types of indexes. This pattern was present in both 

male and female indexes. These measures indicate that while TB cases appear 

to be well connected to others in their networks, they less often bridge relations 

between two other members in the network. We speculate that this pattern may 

arise because network members avoid TB cases because of their illness and 

thereby bypass the role of the case as a ‘bridge’ in the network. It is also possible 

that the index controls were more frequently connected to their community and 

consequently had higher betweenness measures. We found evidence for this as 

the controls were more numerous than TB index cases in the largest component 

network.  

Our findings are based on partially-sampled social networks. To 

understand how sampling could affect the estimates of network metrics, we 

performed sensitivity analyses. We found a higher correlation of centrality 

estimates from egocentric network samples taken from scale-free networks than 

from small-world networks, which we expect to be due to higher variation in the 
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degree distribution of scale-free networks and consequently, increased ability to 

distinguish between more and less central individuals. Since the social network in 

the study was not fully sampled, we cannot determine whether the full, underlying 

network was a small-world or scale-free network. The observed degree 

distribution, however, suggests a closer alignment with scale-free graphs. Thus, 

we believe our centrality measures in our egocentric samples are valid, though 

our findings about node position should be interpreted with caution. Importantly, 

the sensitivity analyses showed that assortativity statistics are robust to 

egocentric sampling. Although our simulated networks were not subject to 

mechanisms of data incompleteness (e.g., imperfect recall) other than the 

sampling protocol itself (this has been analyzed elsewhere (Kossinets, 2006)) our 

sensitivity analyses aid in the interpretation of our findings. 

In the study, we enrolled prevalent cases of TB from city clinics and a local 

hospital. It is possible that there is referral bias if these prevalent cases had more 

advanced disease at presentation than cases at other medical practices in the 

city. We cannot judge the effect of this bias on our findings, but the results on 

assortativity and network position should be interpreted in light of our enrolment 

strategy. Furthermore, our analysis focused on the structure of the social network 

of the indexes without including the infection status of the contacts. In future 

analyses, we will test whether increased network centrality is associated with 

tuberculous infection among contacts (Christley et al., 2005; Kawatsu et al., 

2015).  
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Conclusions 

The findings of this study provide novel insight into how social mixing 

patterns could contribute to the male-bias seen in TB disease. Although men with 

TB were not more central in their social network than women with TB, the men 

did have preferential and higher levels of contact with other men in their 

networks. These findings suggest that contact tracing routines for TB disease 

and infection should be adapted differently for men and for women to optimize 

screening of contacts. The findings also raise questions about the patterns of 

mixing that bring together men with or without TB. Further research is needed to 

delineate the geographic locations and social settings for this mixing, so that 

targeted interventions for screening and treatment may be developed.   
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Tables and Figures 

Table 2.1 Social Network Estimates used to describe the Node Position of Index 
Individuals within the Kampala Network. 

Statistic Definition Equation Notation 
Node degree, 

𝒌𝒔	∈𝟏,𝟐,…𝒏 
Number of 
adjacent edges J 𝐴<,"

=

">0
 Adjacency 

matrix, 𝐴!" = 1, if 
we identified 
contact between 
𝑖, 𝑗 

Betweenness, 
𝒃𝒔∈𝟏,𝟐,...𝒏 

Number of times 
node is on 
shortest path 
between pairs of 
other nodes1 

J
𝜎?@(𝑠)
𝜎?@?A<A@

 
𝜎?@ is the total 
number of 
shortest paths 
from node 𝑢 to 𝑣 
and 𝜎?@(𝑠) is the 
number of those 
paths that pass 
through 𝑠 

Closeness, 
𝒄𝒔∈𝟏,𝟐,...𝒏 

Inverse of the 
average length 
of shortest path 
to all other 
nodes1 

1
∑ 𝑑<!!A<

 𝑑<! is the 
network distance 
between nodes 
𝑠	and 𝑖 

Distance to TB case, 
𝒚𝒔∈𝟏,𝟐,...𝒏 

Network 
distance to a TB 
case1 

minV𝑑<B,BA<W 𝑡 is the set of TB 
cases 

1Network distance, closeness, and betweenness were calculated within the giant 
component because path length is not defined for disconnected graphs. 
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Table 2.2 Social network statistics among index individuals 

Demographics and Social Network Estimates for Index Individuals stratified by 
Index type. Values indicate the number of individuals (proportion) or mean 
(±	standard errors) for each variable. 
 Case 

n=123  
Control  
n=124 

Sig. 

Age  30.6	(±0.90)	 32.0	(±0.85)	  

Monogamous or 
polygamous 
relationship 

	40 (0.33)  70 (0.56) ⋄ 

Node position 
Degree 10.7	(±0.36) 10.2	(±0.36)  

Closeness 0.076 
(±0.001) 

0.077	(±0.001)  

Betweenness 0.009 
(±0.002) 

0.02	(±0.002) ⋄ 
 

Distance to case 3.2	(±0.2) 3.5	(±0.2)  

Mixing variables  
Proportion of all 
contacts with 
adult men 

0.47	(±0.02)	 0.36	(±0.03)	 ⋄ 

Proportion of all 
contacts with 
adult women 

0.37	(±0.02)	 0.40	(±0.02)	  

1Proportion of all 
contacts with 
children 

0.16	(±0.02)	 0.23	(±0.02)	 ⋄ 

2Proportion of all 
contacts 
occurring within 
HH 

0.23	(±0.02)	 0.37	(±0.03)	 ⋄ 

Proportion of 
HH contacts 
occurring with 
children 

0.28 (±0.02) 0.32 (±0.02)  

1 Adults ≥ 15 years old, children <15 
2 HH: Household 
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Table 2.3 Social network statistics among index individuals by sex 

Demographics and Social Network Estimates for Index Individuals stratified by 
Index Type and Sex. Values indicate the number of individuals (proportion) or 
mean (±	standard errors) for each variable. 
 
 Female Male  

Case 
n=39 

Control 
n=39 

Case 
n=84 

Control 
n=85 

Sig. 

Age  25.6	(±0.89)	 28.0	(±1.11)	 32.9	(±1.16)	 33.8
(±1.08)	

∗ 

Monogamous 
or polygamous 
relationship 

12	(0.31)	 22	(0.56)	 28	(0.33)	 48	(0.57)	 ⋄ 

Node position 
Degree 10.4	(±0.70)	 9.95	(±0.4)	 10.8	(±0.4)	 10.3	(±0.5)	  

Closeness 0.077	
(±0.002)	

0.076	
(±0.003)	

0.075	
(±0.002)	

0.078	
(±0.002)	

 

Betweenness 0.005	
(±0.001)	

0.015	
(±0.003)	

0.010	
(±0.002)	

0.022	
(±0.003)	

⋄ 
 

Distance to 
case 

3.4	(±0.3)	 3.8	(±0.3)	 3.0	(±0.2)	 3.3	(±0.2)	  

Mixing variables 
Proportion of 
all contacts 
with adult men 

0.34	(±0.04)	 0.22	(±0.02)	 0.53	(±0.03)	 0.43	
(±0.03)	

∗⋄ 

Proportion of 
all contacts 
with adult 
women 

0.41	(±0.04)	 0.44	(±0.03)	 0.35	(±0.02)	 0.38	
(±0.02)	

∗ 

1Proportion of 
all contacts 
with children 

0.26	(±0.03)	 0.34	(±0.03)	 0.12	(±0.02)	 0.19	
(±0.02)	

∗⋄ 

2Proportion of 
all contacts 
occurring 
within HH 

0.31	(±0.04)	 0.45	(±0.04)	 0.19	(±0.02)	
	

0.33	
(±0.03)	

∗⋄ 

Proportion of 
HH contacts 
occurring with 
children 

0.32	(±0.04)	 0.39	(±0.03)	 0.25	(±0.02)	 0.2
	(±0.02)	

∗ 

1 Adults ≥ 15 years old, children <15 
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2 HH: Household 
∗ Significant difference (p <0.05) between means by index sex (male, female)  
⋄ Significant difference (p <0.05) between means by index type (case, control) 
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Figure 2.1 Types of egocentric network sampling. 

 
Types of egocentric network sampling varies in the amount of information 
collected outward from the index individual. Index individuals, shown in yellow, 
list their contacts in ego-only sampling. In first-level egocentric sampling, index 
individuals additionally indicate whether their contacts are also contacts. In 
second-level egocentric sampling, contacts of index individuals list their own 
contacts. The social network in the Kampala study utilized a second-level 
egocentric design. Sensitivity analyses compare network statistics across 
different types of egocentric sampling. 
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Figure 2.2 Individual-level node statistics among index cases. 

  
We failed to detect a relationship between individual-level characteristics (TB 
infection and sex) and statistics describing a node’s position in social networks 
(degree, betweenness, closeness, and network distance to TB cases). 
Closeness, betweenness, and network distance to TB cases were calculated for 
index individuals in the giant component (i.e., the largest connected network 
component). Boxplots show interquartile regions and outliers.  
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Figure 2.3 Sex-assortative mixing among index cases. 

Proportion of all contacts of index individuals that are with adults and children 
shows there to be high assortativity in the Kampala network. There were more 
within-sex edges than between-sex edges. There were also more edges between 
adult females and children than adult males and children.  
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Figure 2.4 Effects of network sampling on centrality statistics. 

The correlation between true node centrality and estimated node centrality 
depends on the underlying network being sampled and the type of egocentric 
sampling used. We simulated 15 replicates of each network type (scale-free and 
small-world) across a range of network sizes (5	 ⋅ 101, 7.5 ⋅ 101, 1 ⋅ 10., 1.25 ⋅
10., 1.5 ⋅ 10.) all with mean node degree of 10. We then simulated the process of 
three types of egocentric sampling (ego_0, ego_1, and ego_2) and calculated the 
correlation of estimated centrality with true centrality. The black line indicates no 
correlation between sampled node statistics and true node statistics and the red 
triangle shows the mean across all replicates. Since we assumed perfect recall, 
we calculated the correlation in sampled degree on all nodes in the sampled 
network (i.e., not just the ego). Betweenness of egos was estimated from simulated 
networks by capping the number of search algorithm of shortest paths to 25.  
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Abstract 

Globally, Tuberculosis disease (TB) is more common among males than 

females. Recent research proposes that differences in preferential social mixing 

by sex, or sex-assortativity, can alter infection patterns in TB.  We conducted a 

simulation study to see whether sex-assorted mixing patterns can explain the 

global ratio of male:female TB cases and what factors might cause sex-

disparities in infectious diseases to be sensitive to assortative mixing. 

Simulations showed sex-assortativity alone cannot cause sex-bias in TB. 

However, we find an effect of interaction between assortativity and sex-traits that 

suggests a role for behaviour to influence sex-specific epidemiology of infectious 

diseases. In our study, the role of sex-assortativity was especially apparent for 

slower spreading infectious diseases, like TB. We also examined how 

assortativity and sex-traits affect the final outbreak size and other epidemic 

dynamics. These results are important for understanding when sex-assortativity, 

a common feature across human populations, can change epidemiological 

patterns. 

Introduction 

Tuberculosis (TB) is now the leading cause of death due to infectious 

diseases globally, and notification data show that, on average, 1.8 male cases 

are reported for every female case (WHO, 2018). This pattern is strikingly 

consistent across all regions of the world with male:female ratios below 1 being 

extremely rare (Neyrolles & Quintana-Murci, 2009). Male-bias is also seen in 
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adults of all ages but does not seem to apply to children (Guerra-Silveira & Abad-

Franch, 2013). Differences in access to healthcare are not associated with this 

pattern as male-bias is observed in surveys using active case-finding (Borgdorff 

et al., 2000; Salim et al., 2004). Moreover, male-bias is observed in low and high 

income countries alike (Neyrolles & Quintana-Murci, 2009), further reducing the 

likelihood that male-bias is primarily driven by differences in access to healthcare 

since access to healthcare should be more equal in higher income countries. In 

fact, TB is not unique in being male-biased (among adults, 9 out of 11 infectious 

diseases were found to be male-biased (Guerra-Silveira & Abad-Franch, 2013). 

Understanding why sex-bias arises, in both TB and other infectious diseases, 

has widespread implications for basic research on sex-differences in disease and 

treatments (Clayton, 2016), public health (Organization, 2007), and more realistic 

models and predictions of disease burden.  

What causes male-bias in infectious diseases, and in TB, specifically? 

Proposed mechanisms are often categorized into “biological” or “social” (Guerra-

Silveira & Abad-Franch, 2013; Organization, 2007). Hypothesized biological 

mechanisms for male-bias in TB are primarily related to a suspected higher male 

susceptibility to infection. For instance, female cells have two X chromosomes, 

which encode genes involved with both the innate and adaptive immune system 

and are thought to reduce susceptibility of females to a number of pathogens 

(Schurz et al., 2019). In addition, the female hormone estradiol enhances, while 

testosterone downregulates, macrophage activation which is an important 
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pathway for initiating the innate immune response and consequently detecting M. 

tuberculosis (reviewed in (Schurz et al., 2019)). Another common explanation for 

increased male susceptibility to TB is smoking, which is more common among 

men (Islami et al., 2015) and can lead to damaged lung tissue (reviewed in 

(Prevention, 2010)). Indeed at the country-level, adult smoking rates explain up 

to one-third of variation in male-bias (Watkins & Plant, 2006). Other than 

susceptibility, there are additional, lesser studied biological mechanisms that 

could plausibly lead to male-bias. For instance, males are more likely to spread 

infection to their contacts than females (Dodd et al., 2016; Hector et al., 2017), 

indicating higher male transmissibility. Finally, the length of time from disease to 

treatment can vary by sex, with males generally delaying care for longer period 

than females (Meintjes et al., 2008) suggesting males are infectious in the 

community for a longer period. Plausibly, therefore, these different sex-traits -- 

susceptibility, transmissibility, and infectious period -- could lead to male-bias in 

TB.  

Gender-roles and preferences in social contacts may also cause males 

and females to have different exposure patterns (Dodd et al., 2016; Horton et al., 

2020; Nhamoyebonde & Leslie, 2014). For example, one study found adult males 

travelled outside their village 75% more often than females and more than one-

quarter of females identified as housewives, although there was no difference in 

the total number of contacts by sex (Waroux et al., 2018). This suggests if social 

networks play a role in male-bias, it’s not the number of social contacts but the 
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pattern of social contacts that matters for transmission. Assortative mixing by sex 

is a common phenomenon across many cultures and because males are a 

higher incident demographic group than females, this social network structure 

may be important for understanding the basis for male-bias of TB (Dodd et al., 

2016; Horton et al., 2020). Whether biological sex-traits or assortative-mixing by 

sex, have an outsized effect on male-bias at the population-level is the focus of 

this modelling study. 

Infectious disease transmission models can help sort out the importance 

of various biological and social factors on sex-bias in infection. In this study, we 

use mathematical models of disease spread on social networks to examine the 

relative differences in sex-traits and preferential mixing by sex (i.e., assortativity), 

independently and in combination, required to give rise to observed levels of 

male-bias as seen in TB. We were also interested in whether the unique life 

history of human TB, with its long and variable latent period and endemic levels 

of infection in some regions, mediates the effects of sex-traits and assortative 

mixing on male-bias. To investigate these questions, we conducted a 

comparative simulation study of multiple transmission patterns (SIR, SLIR, SIRS, 

and SLIRS) spreading on contact networks that varied from random to extremely 

sex-assortative. Sex-traits investigated were sex-specific susceptibility, 

transmissibility, and infectious period.  
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Methods 

General approach  

We modelled the effects sex-assortativity (𝑟, defined below) and sex-traits 

on male-bias. The sex-traits we considered were susceptibility, transmissibility, 

and infectious period. Susceptibility was defined as the rate of becoming infected 

given contact with an infected neighbour in the network. Transmissibility was the 

rate of infecting a susceptible neighbour in the network. Infectious period was 

defined as the period of time spent in the infected class before recovering. We 

quantified male-bias as the number of infected males divided by the number of 

infected females.  

Network simulation 

In simulated social networks, nodes represent individuals and edges 

between them represent repeated interactions between nodes on which infection 

can spread. To measure assortativity of simulated networks, we used Newman’s 

discrete assortativity coefficient (Newman, 2003). As in Chapter 2, these 

coefficients are based on the matrix, 𝐸!",  describing the fraction of all edges that 

connect a node of type 𝑖 to type 𝑗 we use 𝑎! = ∑ 𝐸!""  (i.e., the proportion of all 

edges connecting to nodes in each group 𝑖). The assortativity coefficient is 

defined as 𝑟 = ∑ $!!𝒊 %∑ &!
#

𝒊
𝟏%∑ &!

#
𝒊

. Because perfectly disassortative networks would be 

disconnected components, 𝑟 ranges from approximately -1 (nearly perfectly 

disassortative) to 1 (perfectly assortative) with zero representing random mixing.   
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To simulate social networks with varying levels of sex-assortativity, we 

used an algorithm presented in (Sah et al., 2014). The Sah algorithm is designed 

to simulate assorted networks that maintain network structures which alter 

epidemic dynamics including average clustering, path length, and degree 

assortativity (Badham & Stocker, 2010). We simulated Sah networks with 

geometric degree distributions because the algorithm was unstable with other 

degree distributions (e.g., Poisson and power-law) and two modules (i.e. sexes) 

which was the focus of this study. To determine whether networks with other 

degree distributions affected results, we conducted sensitivity analyses using 

networks generated with a simple rewiring scheme whereby we rewired between-

sex edges of small-world and scale-free networks until desired levels of 

assortativity were reached and made sure the resulting networks were simple 

(i.e., no multiple edges or self-loops) and connected (i.e., only one component). 

Additional details on the rewiring algorithm are given in Appendix II. We chose 

these networks because they represent realistic human interaction networks 

(Eubank et al., 2004). All networks were initialized with 1000 nodes (500 male, 

500 female) and had a final mean degree of 10. We compared how network 

structural characteristics were affected by increases in sex-assortativity for both 

network algorithms.  

Disease model  

To study disease processes affecting sex-bias in TB, we varied 

parameters within a Susceptible-Latent-Infectious-Recovered-Susceptible 
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(SLIRS) model framework corresponding to different assumptions about disease 

transmission (Table 3.1). For example, to incorporate latent tuberculosis 

infections, we turned on/off latent infection by changing the 𝜎 parameter (𝜎 ≪ ∞ 

leads to a SLIR model whereas 𝜎 → ∞ leads to a SIR model). For models with 

latent infection (SLIR and SLIRS), we set 𝜎 = 0.1 corresponding to an average 

latent period of 10 months. The duration of latent infection in tuberculosis is 

highly variable but the majority of individuals that develop contagious forms of 

tuberculosis progress within a year (reviewed in Behr et al. 2018). Similarly, to 

represent endemic levels of infection where “new” susceptibles reenter contact 

networks over longer time periods, we varied the 𝜙 parameter (𝜙 → 0 leads to a 

SIR model whereas 𝜙 > 0 leads to a SIRS model). In SIRS and SLIRS models, 

we assumed new susceptibles were encountered at rate  𝜙 = 0.1,	corresponding 

to a new contact every 10 months. We assumed the infectious period lasted 6 

months (𝛾 = 0.5) representing a typical treatment delay of 1-3 months (Sendagire 

et al. 2010) and the period of time to complete the intensive phase of typical 

tuberculosis treatment regimens of 2-3 months (Nahid et al. 2016). Finally, to 

understand how overall pathogen transmissibility and corresponding 𝑅* affect 

results, we varied the overall transmission rate, 𝜏. In SIR models, the analytical 

solution for the epidemic threshold (i.e., when 𝑅* = 1) is given by CDEF
GDE#%EF

> 1 

where K is the set of all node degree values in a network, 𝐾( is the set of all 

node degree values squared, and brackets indicate the mean of values in the 

set. Reproductive estimates for TB range from 0.24 to 4.3 (Ma et al., 2018). In 
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simulations, varied values of 𝑅*	from 0.5 to 3.5. We confirmed the epidemic 

threshold numerically (Appendix II, Figure S2.1). Thus, sensitivity analyses 

investigate different pathogen life histories and transmission rates.  

To study how sex-bias could be generated though differences in male and 

female sex traits we varied the strength (𝛼)	of each sex-trait. For susceptibility, 

we multiplied male and female transmission rates, 𝜏H and 𝜏I, depending on the 

sex of the target node in the S-I edge pair. Specifically, for the male:female 

susceptibility ratio, 𝛼<,	we solved the following equations  

 
𝜏H = 𝛼<𝜏I 

	
𝜏H + 𝜏I

2 = 𝜏,	 
 
which hold the overall susceptibility rate constant and results in the following 

solution:  

𝜏H =
2𝛼<𝜏
1 + 𝛼<

 

𝜏I =
(C

0-J$
 . 

 
Thus, when 𝛼< = 1, 𝜏H = 𝜏I = 𝜏 and when 𝛼< > 1, the average 

susceptibility is still 𝜏. Sex differences in transmissibility were modeled in a 

similar way, adjusting the rates depending on the sex of the source node in the 

S-I edge pair. Sex differences in the duration of the infectious period (inverse of 

the recovery rate) were modeled by changing the male and female 𝛾	parameters 

and holding the average infectious period constant.   
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We replicated each network type and disease-model parameter 

combination 250 times and initiated each simulation with one randomly chosen 

infected node. We ran SIR and SLIR simulations until there were zero infected 

individuals and SIRS and SLIRS simulations for 300 time steps. Simulations 

were implemented with a continuous-time Gillespie algorithm with exponentially-

distributed waiting times using the Epidemics on Networks (Miller & Ting, 2020) 

and Networkx packages (https://networkx.github.io/) in Python (Version 2.7.17). 

The Gillespie algorithm is a common method to simulate stochastic processes 

exactly without approximation (Kiss et al., 2017) and while it can be inefficient for 

large systems, implementation with the Epidemics on Networks package was 

computationally tractable in this situation. Additional details about how disease 

spread was simulated in networks are provided in Appendix II. 

Analysis 

To measure male-bias, we calculated the number of males infected over 

the course of the epidemic for SIR and SLIR model structures and as the 

equilibrium ratio of male to female infections in the SIRS and SLIRS model 

structures. For the SIR and SLIR models, simulations were run until there were 

no infected individuals left. For the SIRS and SLIRS models, simulations were 

run until there were no infected individuals left or for 250 timesteps (whichever 

came first). For the SIRS and SLIRS models, we performed preliminary analyses 

to determine when simulations reached endemic levels of infection and 

parameters required to lead to 25% of the population having latent infection at 



 
   

61 

equilibrium (Houben & Dodd, 2016). To compare the effects of assortativity and 

heterogeneity in individual-level infection on epidemic dynamics, we calculated 

the final size, epidemic duration, equilibrium latent and infected prevalence for 

each simulation.  

We used R Version 4.0.0 for analyses and visualizations. All Python and R 

scripts are available at github.com/drakelab/miller-tb-assortativity. 

Results 

In simulated networks, the proportion of within-sex contact increased with 

𝑟, from 45% when 𝑟 =0 to 77% when 𝑟 =0.6 (Figure 3.1). Results from a meta-

analysis of the proportion of within-sex mixing among adults (Horton et al., 2020), 

correspond to values of sex-assortativity from 𝑟 =0.2 to 0.3, which also aligns 

with an independent estimate of sex-assortativity for a social network in Uganda 

(Chapter II of this dissertation). 

Effects of sex-traits and assortativity on male-bias 

In simulations, sex-assortativity did not lead to male-bias. This result was 

not sensitive to model type (SIR, SLIR, SIRS, SLIRS) or network type (Sah 

networks, rewired small-world, rewired scale-free) (Figure 3.2, Figure 3.3, 

Appendix II, Figures S2, S3). 

Combined with sex-traits (susceptibility, transmissibility and infectious 

period), however, assortativity increased male-bias (Figure 3.2). The first sex-trait 

that we investigated, increased male susceptibility (SUS), led to male-bias in the 

absence of sex-assortativity but epidemics on assorted networks had higher 
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male-bias than networks without sex-assortativity (Figure 3.2). This result was 

not sensitive to inclusion of a latent class (Appendix II, Figure S2.3). The 

interactive effect of sex-assortativity and sex-traits on male-bias grew with the 

strength of male:female susceptibility. This was observed across all model types: 

without sex-assortativity median values of male-bias are below 1.8 while median 

values of male-bias with sex-assortativity can exceed 1.8. The amplification 

effect of sex-assortativity on male-bias was not as pronounced in rewired scale-

free networks as rewired small-world networks or Sah networks (Appendix II, 

Figure S2.2).  

The interaction of assortativity and sex-traits on male-bias was especially 

notable in the case of increased male transmissibility (TRA). Without sex-

assortativity, even when males had more than three-fold higher transmissibility, 

male infections were no more likely than female infections (Figure 3.2, Appendix 

II, Figure S2.2). Overall, however, higher male transmissibility rarely resulted in 

ratios of male-bias observed in global TB data.  

Longer male infectious periods (IP), similar to higher male transmissibility, 

did not lead to male-bias in SIR and SLIR epidemics unless taking place on sex-

assorted networks (Figure 3.2, Appendix II, Figure S2.3). In the parameter 

ranges investigated here, median values of male-bias for simulations of longer 

male infectious periods in SIR and SLIR models were all below 1.8. However, 

when recovered individuals can re-enter the susceptible population (i.e., SIRS 

and SLIRS models), longer male infectious periods can result in male-bias and 
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there is a slight increase in male-bias on assorted networks. In SIRS and SLIRS 

models, male-bias due to longer male infectious periods was possible. These 

results were not sensitive to network type (Appendix II, Figure S2.2). 

Transmission rate increased the effect of assortativity on male-bias 

(Figure 3.3). For a slow spreading pathogen (𝜏 = 0.04, 𝑅* ≈ 1.5) and male 

susceptibility twice that of female susceptibility, male-bias increased from a 

median of 1.48 without assortative mixing to 1.85 with strong assortativity (𝑟 

=0.6) indicating a 25% increase in male-bias with assortative mixing. For a faster 

spreading pathogen (𝜏 = 0.1, 𝑅* ≈ 3.5) with the same level of higher male 

susceptibility, male-bias only increased from a median of 1.28 to 1.34 indicating a 

5% increase in male-bias with assortative mixing. Similar relationships were 

observed for the other sex-traits, transmissibility and infection period. 

Effects of sex-traits and assortativity on epidemic outcomes 

In general, on Sah contact networks epidemic dynamics were not affected 

by sex-assortativity or sex-traits (infectious periods, susceptibility, and 

transmissibility) including the peak size, final size, and duration for SIR or SLIR 

epidemics (Appendix II, Figure S2.4). Higher male susceptibility slightly reduced 

the final size of epidemics for faster spreading pathogens but the effect was 

small (Figure 3.4). In contrast to results on Sah networks, assortativity was 

associated with changes in peak size, final size, and duration on rewired network 

(Figure 3.5). We note, however, that while networks generated with the Sah 

algorithm had stable network structures as sex-assortativity increased, rewired 



 
   

64 

networks did not (Appendix II, Figure S2.5). As assortativity increased from 𝑟 =0 

to 𝑟 =0.6, clustering increased by approximately 10% in scale-free networks and 

decreased by approximately 60% in small-world networks. With increasing 

assortativity, average network path length increased by about 10% in scale-free 

networks and decreased by approximately 25% in small-world networks. In both 

small-world and scale-free networks, degree-assortativity increased as sex-

assortativity increased.  

Discussion 

Social mixing patterns can alter transmission patterns of infectious 

diseases (Arregui et al., 2018; Mossong et al., 2008; Rohani et al., 2010). We 

conducted a comparative simulation study to see whether sex-assorted mixing 

patterns can explain the global ratio of male:female TB cases. Simulations 

showed sex-assortativity alone does not cause sex-bias in TB. However, an 

interaction between assortativity and sex-traits does affect the ratio of male to 

female infections suggesting a role for behaviour to influence sex-specific 

epidemiology of infectious diseases. The role of sex-assortativity was especially 

apparent for slower spreading infectious diseases, like TB (Blower et al., 1995). 

We also examined the role of sex-assortativity and sex-traits on the final 

outbreak size and other overall epidemic dynamics.  

Our main result showed that subtle but widespread patterns in sex 

assortativity may shape sex-specific epidemiological patterns. Approximately 55-

65% of human social interactions occur within-sex (Dodd et al., 2016; Horton et 
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al., 2020), which we showed corresponds to assortativity coefficients of 0.2 to 

0.4. Within this range, our simulations suggested that assortative mixing can 

change sex-specific epidemiological patterns when there are underlying 

heterogeneities in sex-traits, especially for slower spreading infectious diseases. 

For example, SIR simulations showed longer male infectious periods and higher 

male transmissibility only produced male-biased infection patterns in the 

presence of moderate (greater than 0.3) values of sex-assortativity. On the other 

hand, higher male susceptibility could lead to male-bias in infection alone. 

However, male-bias was higher in outbreaks on sex-assorted networks 

compared with non-assorted networks. Our finding that slower spreading 

infectious diseases were more sensitive to differences in assortativity is similar to 

previous results, which suggested slower spreading pathogens experience 

structural trapping (i.e., stochastic extinction) while faster spreading pathogens 

experience structural delay (i.e., spread between subgroups is merely delayed) 

(Sah et al., 2017).  Overall these results suggest that sex-assortativity can 

increase the effects of infection differences between males and females on sex-

disparities in infectious diseases, especially for slow spreading pathogens, like 

TB. 

Our conclusion that sex-assortativity can increase sex disparities in TB 

hinges on there being relatively large differences in sex-traits, defined here as 

susceptibility to infection, length of the infectious period, and rate of 

transmissibility to contacts. Multiple authors present strong evidence that there 
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may be differences in immunity and infection for TB between males and females 

(Guerra-Silveira & Abad-Franch, 2013; Nhamoyebonde & Leslie, 2014; Rhines, 

2013; Salim et al., 2004) but the relative difference in specific rates is a complex 

question. The first of the three traits investigated here, higher male susceptibility, 

has been studied experimentally. In one study, castration reduced infection 

following exposure by half in male mice but doubled infection following exposure 

in female mice (reviewed in (Nhamoyebonde & Leslie, 2014)). Susceptibility is 

also linked to male-dominated risk factors such as smoking (Bates et al., 2007) 

and alcohol use (Lönnroth et al., 2008). However, some household studies have 

found no difference in incidence of TB within households of infectious cases 

(Guwatudde et al., 2003). These converging lines of evidence make it difficult to 

ascertain the overall difference in male:female susceptibility, but it is likely a 

crucial determinant of male bias in TB.  

We also explored the effects of higher male transmissibility and longer 

male infectious periods, although there is less evidence for these mechanisms 

than for differences in susceptibility. With regards to transmissibility, the 

proportion of infections caused by males was estimated to be 1.3 to 1.8 times 

higher than infections caused by females in South Africa and Zambia (Dodd et 

al., 2016). Additionally, household contacts of male cases had a higher 

prevalence of latent infection than female cases (ORs of 4.05 in univariate 

analyses; 7.62 in multivariate analyses) (Hector et al., 2017). However, our 

simulations showed no evidence that transmissibility can generate sex-
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disparities, unless the relative difference in male and female transmissibility was 

large, similar to modelling results in (Perkins et al., 2008). The last trait, which 

assumes there could be variation of the infectious period of TB, is a developing 

area of research. Males are more likely to delay care and diagnosis (Meintjes et 

al., 2008), possibly resulting in longer periods of infectiousness in the community. 

Our simulations indicated for sex differences in the infectious period to cause sex 

disparities in infection, the difference in infectious period would have to be large 

and sex assortative mixing would be required. In reality, there are still many 

unknowns about the nature of the infectious period in TB cases generally (Drain 

et al., 2018; Xu et al., 2019) and whether and how the infectious period could 

vary between sexes is an open area of work. In addition, a combination of these 

traits may culminate to produce the consistently male-biased case notification 

data we see for TB. Future experimental and epidemiological studies are needed 

to better quantify the differences immunity and infection rates by sex because 

they all could have different implications for control programs. 

Overall epidemic dynamics, such as final outbreak size, peak timing, and 

outbreak duration, can also be effected by assortativity (also known as 

modularity, or social grouping) in some situations (Nadini et al., 2018; Sah et al., 

2017; Salathé & Jones, 2010). In our simulations, however, with only two groups 

(male and female) and moderate assortativity, there are few differences in overall 

dynamics. Previous studies that have found assortativity to alter the final 

outbreak size have mostly examined the situation where there are many groups 
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with high levels of assortativity (0.8-0.95) (Sah et al., 2017; Salathé & Jones, 

2010). Differences in the direction of change attributed to assortativity can be 

explained by different assumptions about immunity (Nadini et al., 2018) and also 

whether high levels of assortativity in realistic contact networks are associated 

with increased network clustering (Salathé & Jones, 2010) which has the effect of 

lower overall outbreak size (Badham & Stocker, 2010). We find similar results in 

our simulations. For example, our rewired scale-free networks increased in 

clustering with increased assortativity and found assortativity to decrease final 

size. Thus, our simulations further aid in understanding the situations when 

assortativity can affect important outcomes of outbreaks. 

While our simulations tested multiple model assumptions, and our results 

were not sensitive to parameters chosen, these simplistic models do not fully 

capture the complexities of TB, especially in light of recent advances in our 

understanding of the spectrum of infection and disease (Drain et al., 2018). In 

addition, our social contact networks omit age-specific infection rates and age-

specific mixing patterns, which are important for accurately estimating TB burden 

in a population (Arregui et al., 2018). Because the aim of this study was to test a 

general phenomenon, our models were not parameterized for specific 

populations. Epidemiologically-relevant demographic variables, such as the 

reproductive rate, vary across populations (Ma et al., 2018), which may influence 

the applicability of these results to specific populations. The goal of our modelling 

study was to offer qualitative insight into whether assortativity may play a role in 
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causing sex-disparities in TB and other possible pathogen scenarios that might 

be affected by sex assorted mixing.  

 

Conclusions 

These results provide insight into how behaviour can amplify the 

consequences of evolutionary trade-offs between sex and immunity to infection. 

Although we focused on TB, many infectious diseases are male-biased (Guerra-

Silveira & Abad-Franch, 2013) and most populations have social mixing patterns 

marked by sex-assortativity (Horton et al., 2020). We conclude that heterogeneity 

in sex rates, especially differing susceptibility, is more important to sex-disparity 

in infectious diseases than sex-assortativity, but mixing patterns can amplify the 

effects of sex-traits in some cases. For TB, important questions arise about 

whether differences in susceptibility and other sex-traits, are similar to levels 

analyzed here or if there are remaining factors driving sex-disparities in TB. For 

practical purposes, results from this study shed light on when it could be 

inappropriate or misleading to extrapolate infection risk or rates across sexes for 

different models.  
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Tables and Figures 

 
Table 3.1 Transitions, parameters, and values for assortativity model. 

Transition Definition Parameter Average values 
𝑆 → 𝐿 Transmission rate 𝜏 0.04, 0.075, 0.1 
𝐿 → 𝐼 Incubation rate 𝜎 0.1,∞ 
𝐼 → 𝑅 Recovery rate 𝛾 0.5 
𝑅 → 𝑆 Reversion rate 𝜙 1	 ⋅ 10%.	, 0.1 
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Figure 3.1 Relationship between assortativity and within-sex contacts. 

The proportion of contacts within-sex tracks with Newman’s r. For context, the range 
of proportional within-sex mixing from a meta-analysis by Horton et al. (2020) is 
shown in horizontal grey-dashed lines and the sex-assortativity coefficient from a 
social network in Uganda in a horizontal dashed line. Boxplots show calculated 
proportional within-sex mixing from 250 simulated networks at each assortativity level.  
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Figure 3.2 Relationship between assortativity, sex-traits, and male-bias. 

M:F case ratio is influenced by sex-assortativity and sex-traits (columns). Sex-traits 
are susceptibility (SUS), transmissibility (TRA), and infectious period (IP). M:F case 
ratio is measured as the ratio of male to female recoveries (SIR) or infections at 
equilibrium (SIRS). Only parameter combinations leading to mean M:F case bias 
greater than 1.1 are colored and the white boxes show parameter combinations 
leading to a mean M:F case bias from 1.7 to 1.9. Sex-traits are incorporated by 
holding respective overall parameter rates constant but increasing the male 
parameter by the value on the y-axis relative to the female trait. Figure generated with 
250 simulations of epidemics on Sah networks with 𝜏 = 0.04, 𝑅* ≈ 1.5. 
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Figure 3.3 Relationship between assortativity, sex-traits, transmission rate, and 
male-bias. 

 
Sex-assortativity increases M:F case bias more for pathogens with lower overall 
infection rates compared with higher overall infection rates (rows). The M:F case bias 
and sex-traits, are defined in the same way as in Figure 1.  To improve figure clarity, 
only 3 levels of sex-trait strength are shown here. Figure generated with 250 SLIR 
simulations of epidemics on Sah networks. 
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Figure 3.4 Effects of assortativity on epidemic dynamics. 

Sex-assortativity and sex-traits (columns) generally have negligible effects on the final 
epidemic size compared with the effect of transmission rate (rows). To improve figure 
clarity, only 3 levels of sex-trait strength are shown here. Figure generated with 250 
SLIR simulations of epidemics with varying transmission rates on Sah networks. 
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Abstract 

Contact network epidemiology characterizes the effects of network 

structure on disease spread. Recent outbreaks of COVID-19 in nursing homes 

and prisons, where contact structures are far from homogenous, motivated us to 

explore the effect of core-periphery network structure on the outbreak size 

distribution. Core-periphery networks are distinguished by a densely-connected 

core and sparsely-connected periphery. We show that the outbreak size 

distribution transitions from a unimodal distribution centered at the origin to a 

bimodal distribution at lower transmission rates in core-periphery compared with 

homogenous networks. However, at higher transmission rates, core-periphery 

network structure decreases outbreak size. We also showed how peak size, 

peak time, and outbreak duration were affected in various ways by core-

periphery network structure where the directions and magnitudes of changes 

depended on the transmission rate and the size of the core and periphery 

groups. Lastly, we explored how estimates of 𝑅*, the basic reproductive number, 

may be affected by core-periphery contact structure and found that estimators 

that were naive of the underlying contact network structure underestimated (final 

size estimator) and overestimated (proportion extinct) 𝑅*, with the true value in 

the middle. Understanding how epidemics are affected by core-periphery network 

structure could lead to improved interventions that use contact structure to slow 

spread or more accurate estimates of 𝑅*in structured populations. 
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Introduction 

Contact networks, describing the organization of interactions among 

individuals in a population, have drastic effects on epidemic outcomes and the 

efficacy of interventions (Barclay et al., 2014; Cui et al., 2019; Ma et al., 2013; 

Mossong et al., 2008; Pastor-Satorras et al., 2015; Pastor-Satorras & 

Vespignani, 2001; Shirley & Rushton, 2005). Well-known examples that affect 

epidemics include variance in the degree distribution, clustering, and modularity. 

Large variation in the degree distribution, such as in scale-free networks 

(Barabasi & Albert, 1999), can affect whether epidemics are possible (Ma et al., 

2013; Pastor-Satorras & Vespignani, 2001; Shirley & Rushton, 2005). Clustering, 

a distinguishing feature of small-world networks (Watts & Strogatz, 1998) 

generally decreases the epidemic final size (Volz et al., 2011). Modularity, or the 

propensity for nodes to mix with those in the same group (Newman, 2003) can 

affect when the outbreak peaks and ends (Lentz et al., 2012; Ma et al., 2013). 

The efficacy of interventions, such as vaccination herd immunity (Barclay et al., 

2014; Ma et al., 2013), can also be influenced by network structure. For example, 

in scale-free networks, natural immunization confers higher herd immunity than 

random vaccination, for the same proportions vaccinated while the opposite is 

true for small-world networks (Ferrari et al., 2006). Network structure is 

sometimes more important for determining epidemic outcomes than interventions 

(Ma et al., 2013), underscoring the need to study various types of contact 

structure and disease containability.  
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A lesser-studied structure in network epidemiology is that of core-

periphery (CP) networks which are defined by densely-connected cores and 

sparsely-connected periphery nodes (Borgatti & Everett, 2000; Csermely et al., 

2013). Core-periphery networks are one of four theoretically defined meso-scale 

network types, which also include random, modular, and networks with a hole 

(Estrada, 2006). Core-periphery networks differ from modular and degree 

assortative networks because periphery nodes mix with core nodes in a non-

group assortative, degree disassortative fashion. Interestingly, networks with 

degree distributions defined by a power law, 𝑃(𝑘) = 1/𝑘K, have CP-like structure 

when 2 < 𝛽 < 3 (Chung & Lü, 2002), suggesting there could be similarity in 

epidemic outcomes, such as the outbreak size distribution, between power-law 

and CP networks. Others have classified outbreak size distributions as having 

one of two shapes, “J-shaped” and “U-shaped” (Kendall 1956; Nassell 1995). 

The term J-shape refers to a distribution of outbreak sizes that is monotonically 

decreasing with a mode at the origin while the term U-shape refers to a bimodal 

distribution. If CP networks have a diminished epidemic threshold, as power-law 

networks do, we may expect CP networks to have a U-shaped outbreak size 

distribution at lower transmission rates than homogenous networks. While others 

have shown the individual-level of infection is higher among core nodes in core-

periphery like networks (Christley et al., 2005), there remains a gap in the 

network epidemiology literature about the effects of core-periphery structure on 

population-level epidemic dynamics.  
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We were motivated to study CP networks due to the spread of COVID-19 

in contact networks with potentially similar structure. For example, on board the 

Diamond Princess Cruise Ship during its 3 week quarantine, crew workers were 

largely unconfined and passengers rarely left their cabins (Canadian 

Broadcasting Corporation, 2020). This outbreak resulted in nearly 700 

passengers being infected, 9 deaths, and an estimated initial 𝑅* of 9.3 (Emery et 

al., 2020). It’s still unclear whether passenger isolation prevented infections but 

highlights the need to understand outbreaks in structured, isolated populations. 

Nursing homes and prisons, which account for a significant proportion of cases 

and deaths in the United States, are instating similar isolation policies for 

residents during lockdown (The News and Observer, 2020; National Public 

Radio, 2020), who then form a sort of periphery. In both nursing homes and 

prisons, staff maintain their duties and may serve as the only daily interactions 

for residents. Together, we hypothesized, staff and resident interactions form a 

sort of CP contact network in these settings which have been hotspots for 

COVID-19.  

The goal of this study was to understand how core-periphery contact 

networks influence disease spread. To this end, we simulated contact networks 

divided into densely-connected core nodes and sparsely-connected periphery 

nodes, described unique properties of this network structure, and compared 

epidemic dynamics on CP networks with homogeneous networks. Specifically, 

we examined the probability distributions of outbreak sizes, the peak size, peak 
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timing, and outbreak duration for outbreaks in core-periphery and homogenous 

networks. In addition, we characterized how estimates of 𝑅* may be affected by 

CP network structure to guide future intervention planning in these settings, such 

as the vaccination threshold for herd-immunity. These results may additionally be 

applicable to designing interventions that alter population contact structure such 

as creation of “social bubbles” (Block et al., 2020) within workplaces. 

Methods 

Network simulations 

In simulated contact networks, nodes represent individuals and edges 

between them represent repeated interactions between nodes on which infection 

can spread. To simulate core-periphery (CP) networks we modified the algorithm 

presented in (Rombach et al., 2014). The original algorithm allowed for flexibility 

in the size of the core and variability in the  “coreness” of the core (i.e., how much 

more connected it is relative to the periphery) but did not hold the network mean 

degree constant as the coreness increased, a problem when evaluating the 

effects of network structure on epidemics in isolation from network connectivity. 

The original algorithm is defined as follows: 𝐺(𝑁, 𝑑, 𝑝, 𝑘)	where N is network size, 

𝑑𝑁 are core (C) nodes and (1 − 𝑑𝑁) are periphery (P) nodes. Edges are 

assigned independently with probabilities depending on whether the edge would 

be C--C, P--P, or C--P. The edge probabilities of each type are given by 𝑝 ⋅ 𝑘(	for 

C-C edges and 𝑝 ⋅ 𝑘 for other edge types. In this original formulation, as 𝑘 

increases, the number of edges and mean degree increases. In our modified 
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algorithm, the edge probabilities of each type are given by 𝑝 ⋅ 𝑘 	for core-core 

edges and 𝑝/𝑘 for other edge types.  With this modified formulation, 

homogeneous networks are given by 𝑘 = 1 and CP networks have 𝑘 > 1 (Figure 

4.1). To understand disease spread in different populations, we varied the 

network size (𝑁 = 50, 100, 500, 1000, 5000), the relative size of the core 

population (𝑑 = 0.25, 0.5, 0.75) and the coreness (𝑘 = 1, 2, 3, 4). 

To contextualize core-periphery networks within the literature about 

network structure, we estimated the degree assortativity, group assortativity, 

clustering, degree variation and relative degree of the core to the periphery. 

Degree assortativity measures correlation in node degree among nodes that 

share an edge (Newman, 2003). Group assortativity measures how often nodes 

within the same group (i.e., core or periphery) interact (Newman, 2003). 

Clustering is the proportion of triangles in a network (Wasserman & Faust, 1994). 

Degree variation measures the variance in node degree of the network and the 

relative degree of the core to the periphery is the mean degree of all core nodes 

divided by the mean degree of periphery nodes. These statistics aid our 

interpretation of any differences in epidemic dynamics found with changes in 

coreness (𝑘) and allow us to distinguish core-periphery networks from other 

network types.  

Disease model 

To study disease spread in core-periphery networks, we used a 

Susceptible-Latent-Infectious-Recovered (SLIR) model with infection transmitting 
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along an edge at rate 𝜏, latent infections becoming infectious at rate 𝜎	(1/𝜎 is the 

incubation period), and recovery happening at rate 𝛾	(1/𝛾 is the infectious 

period). We assumed an incubation and infectious period of 6 days (Backer et al. 

2020) and varied 𝜏	(0.02, 0.04, 0.075, 0.01) which we found resulted in a range of 

𝑅* values from approximately 1 to 4 in homogeneously-mixing networks 

(calculations given below). For each simulation, we recorded the final outbreak 

size, peak size, peak timing, and outbreak duration. For each set of simulations, 

we recorded the proportion that faded out (resulted in 3 or fewer infections).  

To understand how the ability to estimate 𝑅* is affected by core-periphery 

network structure, we compared three estimators of 𝑅* to the mean number of 

cases caused by the index case, 𝑅L	n  (Lloyd-Smith et al., 2005) which we 

considered to be the true value. First, we estimated 𝑅* assuming we had 

knowledge of the underlying contact structure with the formula 	CDE
#	%EF

C-GDEF
		where <

𝐾 > is the mean, < 𝐾(	 − 𝐾 > is the second moment (variance) of the degree 

distribution and 𝜏, 𝛾 are the transmission and recovery rate (Kiss et al., 2017). 

However, because we are often naive of the underlying contact structure when 

planning interventions for different populations, we compared two additional 

estimators, one based on the final size of outbreaks (Ma & Earn, 2006) and one 

based on the proportion of outbreaks that went extinct (Bailey, 1975; Renshaw, 

1991), which are both naive of the population contact structure. The formula for 

the final size estimator is 𝑍	 = 1 − 𝑒%M&N, which can be solved numerically by 
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finding the root of 0	 = 1 − 𝑒%M&N − 𝑍. Finally, the formula for estimating 𝑅* based 

on the proportion of outbreaks that take off is R* =
0

0%O
 where 𝑝 is the proportion 

that take off (operationally defined here as outbreaks that had more than 3 

infections). To quantify the bias of each estimator 𝑅*r, we calculated (𝑅*r − 𝑅Ln )/𝑅Ls 	. 

We considered estimators to be underestimates of 𝑅L	n if the value was less than 0 

and overestimates if the value was greater than 0.  

Each simulation was initialized by one infected individual selected at 

random from among all the individuals in the population and run until there were 

zero infected individuals remaining. We replicated each disease and network 

parameter combination 500 times. We implemented the model using a 

continuous-time, Gillespie algorithm with the Epidemics on Networks module 

(Miller & Ting, 2020) in Python Version 2. We used R (Team, 2020) Version 4.0.2 

for data analysis and visualization. Scripts to fully reproduce results are available 

at https://github.com/CEIDatUGA/core-periphery-networks and description of the 

Gillespie algorithm used in this Chapter is given in Appendix II. 

Results 

Epidemics on Core-Periphery Networks 

Relative to homogeneous networks, core-periphery networks had 

outbreaks with lower transmission rates (Figure 4.2) despite similar initial 𝑅*, 

measured by the mean number of new infections caused by the index 

individual,	𝑅L	n  (Table 4.1).  
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The outbreak size distribution varied with core-periphery network structure 

(𝑘) and the direction of change depended on the transmission rate, 𝜏 (Figure 

4.3). In networks with 5000 nodes, when 𝜏 = 0.02, the mean final size of 

outbreaks increased with 𝑘. For example, when 𝜏 = 0.02, the mean final size of 

outbreaks increased from 1% to 19% when 𝑘 increased from 1 to 4. In contrast, 

when 𝜏 > 0.02, the final size of outbreaks decreased with 𝑘.  

The final size of outbreaks (i.e., percentage of the population that got 

infected) also varied with the relative size of the core compared with the 

periphery (𝑑) (Figure 4.4). Smaller, denser cores (𝑑 = 0.25) led to larger 

outbreaks than larger, more diffuse cores (𝑑 = 0.75) when 𝜏 = 0.02. However, 

when 𝜏 = 0.1, the mean final outbreak size was smaller when the relative sizes of 

core and periphery groups were unequal (i.e., when 𝑑 = 0.25 or 𝑑 = 0.75). The 

effects of 𝑑 on the final size of outbreaks were similar across network sizes 

(Appendix III, Figure S3.1).  

Besides the outbreak size distribution, core-periphery networks led to 

epidemics with smaller and earlier peaks compared with homogeneous networks 

except when transmission rates were low (Appendix III, Figure S3.2). In addition, 

epidemics on core-periphery networks were generally shorter in duration than on 

homogenous networks. For example, when 𝑁 = 5,000 and 𝜏 = 0.1, outbreak 

duration was 77 days (𝑘 = 4) compared with 95 days in homogenous networks.  

The opposite was true when transmission rates were low: when 𝜏 = 0.02, core-

periphery networks had outbreaks that lasted nearly 80% longer than 
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homogenous networks. The effects of 𝑘 on the peak size, peak time, and 

outbreak duration were similar across network sizes (Appendix III, Figure S3.3). 

The size of the core (𝑑) also affected trends in peak size and outbreak duration 

(Appendix III, Figure S3.4). With low transmission rates, 𝜏 = 0.02, networks with 

smaller cores (𝑑 = 0.25) had outbreaks with larger peaks and epidemics that 

were longer lasting compared with outbreaks on networks with larger cores (𝑑 =

0.75).  

Estimating 𝑅* in Core-Periphery Networks 

With equal sized core and periphery groups, 𝑅* of outbreaks taking place 

on homogenous networks (𝑘 = 1) was generally well-estimated by the excess 

network degree variation estimator and the final size estimator (Figure 4.5, 4.6). 

The proportion extinct estimator tended to overestimate 𝑅* even in homogeneous 

networks. In contrast, estimates of 𝑅* based on the proportion extinct estimator 

were always biased high and did not increase monotonically with 𝑘. The 

estimator based on excess degree variation tended to overestimate 𝑅* and the 

final size estimator tended to underestimate 𝑅*	as 𝑘 increased (Figure 4.5, Figure 

4.6). These patterns remained when core and periphery groups were different 

sizes. 

Core-Periphery Network Structure 

Simulated networks had stable network mean degrees, were connected 

(i.e., there were no isolated nodes), and had visual structural changes in how 

core and periphery were connected with increasing coreness, 𝑘. Among 
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networks with 5,000 nodes and evenly sized core and periphery groups (𝑑 = 0.5), 

degree and group assortativity coefficients were approximately zero across 

different values of k, indicating that mixing among nodes with different degrees 

and nodes in different groups (i.e., core, periphery) was just as likely to mix as 

nodes with similar degrees and in the same group (Appendix III, Figure S3.5 A, 

B). As 𝑘 increased, changes in the clustering coefficient were minimal, increasing 

from a mean of 0.002 when 𝑘 = 1 to a mean of 0.0035 when 𝑘 = 4 (Appendix III, 

Figure S3.5 C). The mean degree variance (Appendix III, Figure S3.5 D) and the 

relative mean degree of core to periphery nodes (Appendix III, Figure S3.5 E) 

both increased considerably as 𝑘 increased.  

Discussion 

We explored the effects of core-periphery network structure on epidemics. 

Our main results are that epidemics are possible in core-periphery networks at a 

lower transmission rate than in homogeneous networks but as the transmission 

rate increases, core-periphery network structure limits the epidemic size relative 

to homogenous networks. We additionally showed that the peak size, peak time, 

and outbreak duration were affected in different ways by core-periphery network 

depending on the transmission rate and the size of the core and periphery 

groups. Lastly, we explored how estimates of 𝑅* may be affected by core-

periphery contact structure and found that some estimators underestimated (final 

size estimator, excess degree) and overestimated (proportion extinct) 𝑅*, with 

the true value in the middle. Understanding how epidemic outcomes are affected 
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by core-periphery network structure could inform interventions that use contact 

structure to slow spread and lead to more accurate estimates of 𝑅* in structured 

populations. 

This study contributes to the broad body of work exploring how contact 

patterns can affect epidemic outcomes (Bansal et al., 2007; Keeling & Rohani, 

2007; Meyers et al., 2005; Rohani et al., 2010). Our main findings involved the 

probability distribution of outbreak sizes in core-periphery relative to homogenous 

networks. In stochastic models of disease transmission, such as the one used 

here, the epidemic threshold occurs when the outbreak size distribution 

transitions from unimodal (i.e., “J-shaped”) to bimodal (i.e., “U-shaped”) (Kendall 

1956; Nassell 1995). We showed that the transition from J-shape to U-shape 

occurs at a lower transmission rate in core-periphery networks relative to 

homogeneous networks. However, when 𝑅* ≥ 1.5 core-periphery networks were 

associated with slightly smaller outbreaks. These findings can be understood in 

light of differences in degree variation. When networks have core groups, 

especially when they are small, degree variation increases and as degree 

variation approaches infinity, outbreaks of pathogens with low transmission rates 

become possible (Pastor-Satorras & Vespignani, 2001; Shirley & Rushton, 

2005). When an infected individual is introduced into small, densely connected 

core groups, pathogens with lower transmission rates may initially persist in the 

population until spread becomes limited by the lack of connections to the 

periphery (i.e., “core-trapping”), as happens much faster for pathogens with 
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higher transmission rates. This is consistent with our findings about peak size 

and peak time: pathogens with lower transmission rates have delayed and larger 

peaks in addition to longer-lasting outbreaks in core-periphery networks 

compared with homogeneous networks suggesting temporary persistence within 

the dense core. Thus, our findings suggest core-periphery networks may 

facilitate initial disease spread by allowing temporary persistence in the core 

when epidemic dynamics are near the epidemic threshold but when 𝑅* ≫ 1, 

core-periphery networks inhibit disease spread due to there being reduced 

chances for spread to periphery nodes (i.e., “core-trapping”). 

Due to these differences in the outbreak size distribution near the 

epidemic threshold in core-periphery networks and their effects on the final size 

of outbreaks, we showed how estimations of 𝑅* can be biased. Specifically, 

because core-periphery structure generally limits the size of outbreaks (except 

when 𝑅* ≈ 1) the final size estimator was biased low and because the network 

invasibility increases in networks with large degree variation, the estimator based 

on the proportion of outbreaks that go extinct was biased high. Similar to the final 

size estimator, the excess degree estimator (Meyers et al., 2005) also tended to 

underestimate 𝑅* in core-periphery networks likely because the variance to mean 

degree ratio (i.e.,  DP
#%PF
DPF

 ) increased while the final size decreased (when 𝑅* ≥

1.5). Overall, these results suggest caution in interpreting estimates of 𝑅* in 

structured populations but that comparing multiple estimations may improve 

estimations and interventions based on 𝑅*, such as the vaccine threshold.  
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While core-periphery networks have been less-well studied in the network 

epidemiology literature, they have been described elsewhere (Csermely et al., 

2013; Holme, 2005; Rombach et al., 2014) and this study further characterizes 

CP structure for use in network modeling of infectious diseases. First, we 

modified an existing algorithm (Rombach et al., 2014) so that we could separate 

the effects of CP-structure on epidemic outcomes from changes in edge density 

and clustering. We then characterized networks generated by this algorithm, and 

in line with previous descriptions (Csermely et al., 2013), showed that core-

periphery networks are distinguished from modular and degree-assorted 

networks because periphery nodes mix with core nodes in a non-group, degree-

disassortative fashion, which we quantified here. We additionally showed that CP 

networks have near-zero clustering coefficients, which can decrease the final 

epidemic size (Volz et al., 2011), meaning this is not likely the reason that 

outbreaks are smaller in core-periphery networks when 𝑅* > 1.5. In contrast, 

both degree variance and mean degree of core relative to periphery nodes 

increased as coreness increased, which we believe, in addition to the lack of 

change in assortativity and clustering, are driving increased invasibility of CP 

networks near the epidemic threshold. The modified Rombach algorithm 

presented in this study is efficient for the networks at least up to 5,000 nodes and 

is suitable for future research in network epidemiology and a variety of other 

fields.  
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Core-periphery contact structure may be relevant to disease spread in 

settings that have exhibited COVID-19 outbreaks including cruise ships, nursing 

homes (Dool et al., 2008), and correctional facilities where passengers, 

residents, and incarcerated individuals may form a sort of periphery to the facility 

staff.  The 𝑅* of COVID-19 is generally thought to be larger than 1.5 (e.g., 

Kucharski et al., 2020) and as a result, in these settings with frequent COVID-19 

outbreaks, core-periphery contact structure may limit the final size of outbreaks. 

Additional decreases in core-core (i.e., staff-staff) interactions or creation of staff-

resident “bubbles” (Block et al., 2020),  may further reduce spread and these 

changes would only rely on altering the contact structure. In the event that a 

vaccine becomes available, contact structure within these settings will likely 

affect the optimal distribution strategy (Thedchanamoorthy et al., 2014). In 

nursing homes, vaccinating staff is an efficient way to reduce the spread of 

influenza among residents  (Dool et al., 2008) and this is likely due to a core-

periphery contact structure among staff and residents. This study highlights the 

advantages to understanding a population’s contact structure and future research 

should seek to identify optimal interventions in core-periphery networks and test 

predictions about the final size with real data.  

These simulations focused on the relatively idealized system of closed 

populations with static contact networks. Future work could aim to extend these 

findings to more realistic, dynamic, semi-closed populations (e.g., residents and 

staff in nursing homes) and to link ideas presented here with concrete 
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intervention applications (e.g., reduction of staff-staff interactions and creation of 

workplace “social bubbles” (Block et al., 2020). In addition, simulations assumed 

there was an equal chance of initial infection in core and periphery groups, when 

in reality, staff in nursing homes or prisons may be more likely to import 

infections than residents or incarcerated individuals. Finally, simulations 

assumed equal susceptibility, transmissibility, and infectious periods in core and 

periphery individuals as well as over the course of the epidemic. For many 

infectious diseases, age, sex, and interventions may affect these rates and 

interact with contact structure, like core-periphery networks, to further alter 

epidemic dynamics, a promising topic for future work. 

Conclusions 

Epidemic outcomes and estimation of key parameters are tied to 

populations’ underlying contact networks. When contact patterns are structured 

into densely-connected core and less well-connected periphery groups, 

epidemics are possible at a lower transmission rate relative to homogenous 

networks but as 𝑅* increases, the final size of epidemics is smaller in core-

periphery relative to homogenous networks, perhaps be due to a “core-trapping” 

mechanism. Overall, these findings contribute to the broad literature describing 

the effects on contact structure on epidemics and may shed light on the 

dynamics of COVID-19 in structured populations currently experiencing large 

outbreaks such as nursing homes and prisons. 
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Tables and Figures 

Table 4.1 Reproductive ratio in core-periphery networks 

k 𝜏 = 0.02 𝜏 = 0.04 𝜏 = 0.075 𝜏 = 0.1 

1 
(Homogeneous) 

1 (0.1) 1.9 (0.1) 3.2 (0.1) 3.6 (0.1) 

2 1 (0.1) 2 (0.1) 3 (0.2) 3.7 (0.2) 
3 1 (0.1) 1.9 (0.1) 3.2 (0.2) 3.6 (0.2) 
4 1 (0.1) 1.9 (0.1) 2.9 (0.2) 4 (0.3) 

 
Average number of new infections caused by the index infected individual (𝑅L	n ) 
with varying coreness, 𝑘, and transmission rates, 𝜏. Shown for networks with 
5000 nodes, equal sized core and periphery groups, and 500 simulations.  
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Figure 4.1 Core-periphery network examples. 

Examples of core-periphery networks with increasing coreness (k). Networks 
shown have 100 nodes and 50% are in the core (d=0.5). Node color shows 
whether the node is “core” (red) or “periphery” (black).  
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Figure 4.2 Simulated outbreaks in core-periphery and homogeneous networks. 

Outbreaks are larger in core-periphery (shown for k=3) than homogeneous (k=1) 
networks when transmission rate is low, but not when transmission rates are 
high. Columns are faceted by transmission rate (𝜏). Results are shown for 
epidemics on networks with 500 nodes and 50% of nodes in the core (d=0. 5). 
Lines and colors show results from 20 simulation replicates.  
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Figure 4.3 Effects of core-periphery networks on final size. 
 
Core-periphery network structure increases the final size of outbreaks when 
transmission rates are low. Coreness (k) is shown in colors and the final size 
(percent of the population infected at the end of the simulation) is shown along 
the x-axis. Columns are faceted by network size and rows are faceted by 
transmission rate (𝜏). Histograms are scaled to the max count in each network 
size, transmission rate panel. Results shown for evenly sized core and periphery 
groups (d=0.5) and 500 simulations of each parameter combination. 
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Figure 4.4 Effects of core size on final size. 

The size of core relative to the periphery (d) affects the final size of simulated 
outbreaks. Coreness (k) is shown in the color of density distribution and the final 
size (percent of the population infected at the end of the simulation) is shown 
along the x-axis. Columns are faceted by transmission rate (𝜏) and rows are 
faceted by the relative size of the core (d). Histograms are scaled to the max 
count in each transmission rate, core size panel.  Plot shows results for networks 
with 5000 nodes and 500 simulations of each parameter combination.   
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Figure 4.5 Relationship between the mean number of infections caused by the 
index case and estimators of the reproductive number. 

𝑅*r estimators based on the excess-degree, final-size, and proportion-extinct 
estimators have varying relationships with the mean number of infections caused 
by the index case, 𝑅L	n . Coreness is shown in colors (same as figure 4), rows are 
faceted by network size, points and error bars show mean of 500 simulations and 
standard error of the mean. Plot shows results for networks with evenly sized 
core and periphery groups (d=0.5). 
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Figure 4.6 Bias of reproductive number estimators for outbreaks on core-
periphery contact networks. 

Bias of 𝑅*r estimators calculated as (𝑅*r − 𝑅Ln )/𝑅Ls  where 𝑅Ls  is the mean number of 
infections caused by the index case for each set of parameters. Values less than 
zero indicate the estimator underestimated 𝑅L	n   and values above zero indicate 
overestimated 𝑅L	n . Coreness is shown in colors and 𝜏 on the y-axis. Rows are 
faceted by network size. Plot shows results for networks with evenly sized core 
and periphery groups (d=0.5) and mean bias calculated from 500 simulations. 
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Abstract 

COVID-19 has disproportionately affected populations living and working 

in care, correctional, and food processing facilities in the United States but we 

lack a broader understanding of the extent and variation in outbreak sizes within 

these populations. The distribution of outbreak sizes for COVID-19 should 

include frequent, large outbreaks given the reproductive ratio is estimated to be 

larger than one unless control strategies have successfully mitigated spread. 

Because these populations have highly structured, non-homogenous contact 

strategies, we modeled the spread of COVID-19 in core-periphery networks and 

characterized the outbreak size distribution under a number of scenarios. We 

then analyzed the outbreak size distribution in United States care, correctional, 

and food processing facilities. We show a mismatch between simulated outbreak 

distributions, without interventions, and actual outbreak distributions in these 

populations. We suggest that most large outbreaks were prevented by the 

interventions taken by these facilities. To better understand how the mitigation of 

COVID-19 may have been achieved, we study the outbreak size distribution in 

care facilities over time and compare the size of outbreaks in facilities with 

access to two specific interventions. These results provide preliminary, but 

promising, support that the interventions taken have reduced spread in 

vulnerable populations. 
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Introduction 

In the United States, COVID-19 cases and deaths have been 

concentrated in settings such as nursing homes, prisons, and food processing 

plants due to high population densities, pressure to work while sick, high 

prevalence of pre-existing conditions, and limited access to healthcare    

(D’Adamo et al., 2020; McMichael et al., 2020; Waltenburg et al., 2020). For 

example, in late February an outbreak in a long-term care facility in Washington 

led to 81 resident cases, 34 staff cases, and 23 deaths (McMichael et al., 2020). 

Frequent outbreaks have similarly been reported in correctional and food 

processing (Waltenburg et al., 2020) facilities but we lack a broader 

understanding of the proportion of individuals infected, or the outbreak sizes, 

within these settings and this is an identified gap in our understanding of spread 

in these vulnerable populations (Wallace et al., 2020).  

The distribution of outbreak sizes can be “J-Shaped” or “U-Shaped” 

(Kendall, 1956; Nāsell, 1995). The term “J-shape” refers to a distribution of 

outbreak sizes that is monotonically decreasing with a mode at the origin while 

the term “U-shape” refers to a bimodal distribution. Theoretically, the transition 

between “J-Shaped” and “U-Shaped” occurs when the reproductive ratio is above 

one” (Kendall, 1956; Nāsell, 1995) but contact network structure can affect where 

the transition occurs (Pastor-Satorras & Vespignani, 2001; Shirley & Rushton, 

2005). We expected care, correctional, and food processing facilities would all 

have highly structured contact patterns with large variation in contact rates 
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between staff, residents, and workers at food processing plants being a notable 

feature (Dool et al., 2008), especially in lockdown settings due to COVID-19 

(Grabowski & Mor, 2020). Though contact structure is important for determining 

the threshold for large outbreaks to occur, and thus the shape of the outbreak 

size distribution, the reproductive ratio for COVID-19 has generally been 

estimated to be much larger than one (e.g., Kucharski et al., 2020). In this 

situation, we would expect “U-Shaped” outbreak size distributions unless disease 

control measures effectively mitigated transmission.  

Here, we modeled the unmitigated spread of COVID-19 in structured 

contact networks with a range of transmission rates and initial conditions to 

understand the effects on the distribution of outbreak sizes. We then compiled 

publicly available data and characterized the outbreak size distribution in United 

States care, correctional, and food processing facilities. Our main result is to 

show the mismatch between simulated outbreak distributions, without 

interventions, and actual outbreak distributions in these populations. In addition, 

we used descriptive analyses to study changes in outbreak sizes over time, 

space, and with access to two interventions. Combined, this study provides 

preliminary, but promising, support that the interventions taken have reduced 

spread in vulnerable populations. 
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Methods 

Simulated Outbreak Size Distribution 

To model the spread of COVID-19 in core-periphery networks, we used a 

Susceptible- Latent- Infectious- Recovered model. We assumed a mean 

infectious period of 3.5 days (1/𝛾) which was informed by estimates of the time 

from symptom onset to hospitalization in residents at a Washington skilled 

nursing facility (Arentz et al., 2020). We also assumed a 3.5 day incubation 

period (1/𝜎) when individuals were not yet infectious (Li et al., 2020).  

To study how the shape and mean of the outbreak size distribution 

changes across scenarios, we varied the reproductive number and initial 

conditions. We varied the reproductive number by setting the transmission rate 

(𝜏) such that the basic reproductive number ranged from 0.8 (for facilities that 

may have controlled the outbreak) to 3.5 (Gatto et al., 2020). The reproductive 

number was calculated based on the network structure as 𝜏 < 𝐾(	 − 𝐾 >/(𝜏 +

𝛾) < 𝐾 > where < 𝐾 > represents the mean degree and < 𝐾(	 − 𝐾 > represents 

the degree variance (Kiss et al., 2017). To determine the effect of the number of 

initially infectious individuals on the shape and mean of the outbreak size 

distribution, we sparked each simulation by one, three, or five individuals at 

random. To calculate the outbreak size, we ran each simulation until there were 

zero infected individuals. We simulated the model with each transmission rate 

and initial condition combination 1,000 times. We implemented the model using a 

continuous-time, Gillespie algorithm in the Epidemics on Networks module (Miller 
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& Ting, 2020) in Python Version 2 (further details on the algorithm are given in 

Appendix II).  

To model the structure of core-periphery networks, we used the algorithm 

presented in Chapter 4 of this Dissertation. Specifically, we assumed 25% of 

nodes were in the core and 75% were in the periphery. We set the parameter 

that controls how densely connected the core is relative to the periphery, k, to 4 

representing highly structured networks that we propose may be present in some 

nursing homes and prisons. All networks were initialized with a mean degree of 

10 and 500 nodes (Appendix IV, Figure S4.1 for how this compares to population 

size in care, correctional, and food processing facilities).  

Outbreak Size Distribution in Care, Correctional, and Food processing Facilities 

We gathered data about completed (i.e., no reported ongoing 

transmission) outbreaks in populations associated with three contexts: care 

facilities, correctional facilities, and food processing facilities to compare with 

simulated data. For care facilities, we used the CDC’s National Healthcare Safety 

Network (NHSN) system data. NHSN data were downloaded on November 17, 

the range of reporting dates was from May 24 to November 11. The majority of 

facilities reported each week and we used the last reporting date (November 11) 

for total confirmed cases per facility. We excluded rows of data that did not pass 

the data quality assurance test (as recommended by NHSN). To meet inclusion 

criteria about outbreaks not being ongoing, we also excluded facilities that (1) 

reported 3 or more confirmed cases in the week leading up to the last reporting 



 
   

117 

date, (2) facilities that reported more resident cases than occupied resident beds 

as these likely reflect facilities with high turnover, (3) facilities that reported 0 total 

resident cases as we were specifically interested in facilities that had an 

introduced case of COVID-19 among the resident population, and (4) facilities 

that had fewer than 10 residents to improve comparisons across facilities of 

varying sizes. 

We characterized trends in care facility outbreaks over time, space, and 

with access to two interventions (access to resident testing and asymptomatic 

surveillance of residents the week before the first case was confirmed in the 

facility). We compared outbreak sizes over time by extracting the date (week 

since the first reporting date, May 24) that the facility reported their first resident 

case and used Spearman’s correlation coefficient to measure the strength of the 

relationship between outbreak size and the date of first resident case across 

facilities. We additionally compared spatial trends in the outbreak size 

distributions by US states and regions (defined with Census Bureau-designated 

major regions). We also examined the relationship between the average timing of 

outbreaks (mean week of first resident case) and the average outbreak size 

across states using Pearson’s correlation coefficient. In addition, we described 

trends in the proportion of facilities that “flattened” the COVID-19 outbreak curve 

over time (across month of first resident case reported) by calculating the 

proportion of facilities that ever reported more than 5 confirmed COVID-19 cases 

among residents and staff in a single week. Finally, we extracted information 
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from the NHSN data about facility access to interventions (Appendix IV, Figure 

S4.2). We chose to focus on two interventions that were widely reported: whether 

the facility had in-house testing and whether the facility reported doing 

surveillance testing of asymptomatic residents. Because these intervention 

variables were only available in reporting weeks starting on August 16, 

intervention analyses only included facilities that reported their first case later 

than August 16. For both interventions, facilities were recorded as having access 

to the intervention if they reported access to the intervention the week prior to 

their first resident case reported. We compared the outbreak sizes of facilities 

that reported access to interventions compared with those that did not using t-

tests. 

For correctional facilities, we used UCLA’s Behind Bars Dataset, which 

was downloaded on September 8 and September 14, 2020, when approximately 

186,000 people had been infected and at least 1,120 inmates and correctional 

officers had died according to reporting from the New York Times. We excluded 

facilities from the September 14 dataset if there were 3 or more cases reported 

compared with the September 8 dataset. As we were specifically interested in 

transmission among facilities with residents and staff, we also excluded facilities 

with zero estimated incarcerated individuals (e.g., administrative buildings). 

Lastly, we excluded correctional facilities with more cases than estimated daily 

population sizes which likely represent high turnover and do not meet our 

definition of closed populations. Because we were interested in the proportion of 
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the population in each facility that was infected, we supplemented Behind Bars 

dataset with resident and staff population sizes using data we gathered from 

each state department of corrections website.  

Finally, for food processing facilities, we extracted clusters from the New 

York Times Cluster Tracker, which lists reported COVID-19 clusters of all types 

linked to at least 50 cases. To specifically extract the outbreaks in food 

processing facilities, we searched for the following keywords: “MEAT”, “PORK”, 

“BEEF”, “POULTRY”, “SEAFOOD”, “FARM”, “FISH”, “DAIRY”, “JBS”, 

“POTATOES”, “FOOD”, “SAUSAGE”, “PACKING”, “TURKEY”, “BACON”, 

“APPLE”, “PROCESSING”, “PACKAGING”, and “FRUIT”.  We downloaded these 

data on September 8 and September 14, 2020. We excluded facilities from the 

September 14 dataset that had 3 or more cases than the September 8 dataset. 

At this time, the most recent CDC report about COVID-19 in food processing 

facilities was released on July 10, 2020 and estimated that among 23 states 

reporting COVID-19 outbreaks in meat and poultry processing facilities, 16,233 

cases in 239 facilities occurred, including 86 deaths (Waltenburg et al., 2020). 

Similar to our analysis for correctional facilities, we supplemented data on 

outbreaks at food processing facilities with information about employees working 

at each facility from each company’s websites.  

We defined the final outbreak size as the number of reported cases 

divided by population size (Appendix IV, Figure S4.1). Because there was 

varying information for each facility type, we calculated the final size for residents 
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(measured by number of occupied beds) in care facilities, for incarcerated 

individuals (measured by prison capacity) in correctional facilities, and for 

workers (measured by number of staff) in food plants.  

All data analyses and simulations were performed in R version 4.0.0 and 

Python Version 2. Scripts to reproduce results are available at 

https://github.com/CEIDatUGA/miller-covid-clusters. 

Results 

The theoretical shape of the outbreak size distribution as demonstrated by 

simulations was qualitatively affected by the basic reproductive number and was 

only “J-shaped” if the basic reproductive number was less than or close to 1. 

Otherwise it was “U-shaped” (Figure 5.1). Initial conditions affected the height of 

the outbreak size distribution at smaller outbreak sizes, especially when the 

reproductive number was close to one. For example, when the reproductive ratio 

was one, 67% of outbreaks had fewer than 10 infected individuals when there 

was one index case compared with only 25% of outbreaks when there were 3 

initially infected individuals. The mean outbreak size was affected by both the 

reproductive number and the initial conditions. When the reproductive ratio was 

1.2, the mean outbreak size was 0.05 when there was one introduced case, 0.10 

when there were 3 introduced cases, and 0.12 when there were 5 introduced 

cases.  

In United States care (n=8,863) and correctional (n=274) facilities, the 

outbreak size distributions were “J-shaped” (Figure 5.2). Among care and 
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correctional facilities reporting at least 1 resident case, the mean outbreak size 

was 0.30 and 0.13, respectively. In food processing facilities (n=80), which all 

lacked data on outbreaks with fewer than 50 cases, the outbreak size distribution 

was “J-shaped” in the tail of the distribution for which we had data. The mean 

outbreak size among workers at food processing facilities was 0.23. 

In care facilities, the shape and mean of the outbreak size distribution 

varied depending on the month when the facility reported the first case among 

residents (Figure 5.2D). If the facility reported the first case from January through 

May 2020 (n=3,636), the mean size was 0.362 and 91% of outbreaks had 3 or 

more resident cases compared with a mean size of 0.13 and only 43% of 

outbreaks with 3 or more resident cases in facilities reporting their first case in 

October 2020 (n=354). There was a significant correlation between week of first 

case and outbreak size across all facilities (Spearman’s correlation coefficient, -

0.32, 𝑃 < 0.0001). When excluding the first reporting week of May 24, the 

correlation between the date of first case and outbreak size across all facilities 

decreased, but remained high (Spearman’s correlation coefficient, -0.26, 𝑃 <

0.0001).  

The outbreak size distribution also varied by state with Massachusetts 

(mean outbreak size: 0.43, n=227), Connecticut (mean outbreak size: 0.40, 

n=145), and South Carolina (mean outbreak size: 0.40, n=136) having the largest 

average outbreak sizes. In contrast, Hawaii (mean outbreak size: 0.09, n=16), 

Oregon (mean outbreak size: 0.14, n=47), and Wyoming (mean outbreak size: 
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0.15, n=9) reported the smallest outbreak sizes among residents. By region, 

facilities in the West and Midwest reported the smallest outbreaks while facilities 

in the South and Northeast reported the largest outbreaks. In general, facilities in 

states that had large average outbreak sizes also reported earlier outbreaks 

(Figure 5.4, Spearman’s correlation coefficient between average week of first 

resident case by state and mean outbreak size by state was -0.54, P<0.0001).  

The later the facility reported their first resident case, the less likely it was 

to report large weekly increases in resident cases (Figure 5.5). In facilities that 

reported their first resident case from January to May, 84% of facilities reported 5 

or more cases per week at least once. In contrast, this percentage dropped to 

68% in July and to 10% in November. These trends suggest that facilities that 

had later outbreaks successfully “flattened the curve” likely due to a combination 

of increased vigilance and improved access to interventions which I investigate 

next. 

In the 2,021 care facilities that reported their first resident case after 

August 16 (when intervention data were available), the mean outbreak size was 

6% (95% CI: 2-8%) lower in facilities that reported residents having access to 

testing the week before the first resident case was reported (mean outbreak size: 

0.17, n=1,050) compared with those that did not report access to testing (mean 

outbreak size: 0.23, n=504) and this was a significant difference (t-test, 𝑡 = −3.9, 

𝑃 = 0.0001). The final size was also 5% (95% CI: 2-7%) lower among care 

facilities that reported surveillance testing of asymptomatic residents the week 
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before the first case was reported (mean outbreak size: 0.17, n=671) compared 

with facilities that did not (mean outbreak size: 0.23, n=1,091) which was also a 

significant difference (t-test, 𝑡 = −3.5, 𝑃 = 0.0004). In addition, there were 6,347 

fewer COVID-19 cases (and 917 fewer deaths) among residents in facilities that 

reported doing asymptomatic surveillance testing of residents the week leading 

up to the first confirmed case compared with facilities that did not. Finally, both 

interventions were reported with increased frequency over time (Appendix IV, 

Figure S4.2) with less than 10% of facilities reporting “point of care testing” within 

the facility in August compared with 87% of facilities by November. Similarly, 

surveillance testing of asymptomatic residents increased among facilities from 

approximately 30% of facilities in August to nearly 50% of facilities in November.  

Discussion 

Outbreak size distributions are indicative of underlying rates of 

transmission in populations. Without interventions, we showed how the outbreak 

size distribution in structured contact networks resemble one of two shapes, “J-

Shaped” and “U-Shaped”, as (Kendall, 1956) and others have previously shown 

for well-mixed populations. As predicted by theory, the distributions were only “J-

Shaped” when the basic reproductive ratio was close to one, indicating outbreaks 

are expected to go extinct before causing large epidemics in the population 

(Nāsell, 1995). The fact that we found COVID-19 outbreak size distributions in 

US care, correctional, and food processing facilities had “J-Shaped” distributions, 
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despite COVID-19 having an estimated reproductive ratio much larger than one 

(Gatto et al., 2020), is evidence that control measures have mitigated spread.  

In United States care facilities, we explored temporal and spatial trends in 

the outbreak size distribution. There was a significant negative relationship 

between outbreak size and when each facility reported their first resident case, 

but most of the variation in outbreak sizes that was explained by the date of first 

resident case was due large outbreaks reported prior to the first reporting week 

on May 24. This indicates a discontinuity in how outbreak sizes were changing 

over time, with facilities that had early outbreaks (beginning prior to May 24) 

reporting much larger outbreaks on average than those that began after May 24. 

In addition, there was wide variation in outbreak sizes across states with states in 

the Northeast and South reporting the largest outbreak sizes in the country while 

states in the West and Midwest reported the smallest outbreaks. Some variation 

in outbreak sizes across states is likely due to the average timing of spread in 

each state, and there was a negative correlation between the average timing of 

the first case report date and mean outbreak size at the state level. This 

suggests a variable representing community transmission will help explain 

variation in outbreak sizes at the facility-level. In addition, there was a large 

increase over time in the number of facilities that flattened their outbreak curves. 

Together, these patterns reflect expected trends in outbreak sizes if care facilities 

had increased outbreak awareness and vigilance in control strategies over time.   



 
   

125 

Exactly which interventions reduced spread in these facilities is an 

important question for control in these vulnerable populations. In care facilities, 

we studied the relationship between outbreak size and two interventions: whether 

residents had access to testing in the facility and whether asymptomatic 

surveillance testing of residents was performed the week leading up to the first 

confirmed resident case in the facility. Because intervention variables were 

largely reported only after August 16, we only used the subset of facility data that 

reported their first confirmed resident case after this date. However even within 

this limited time frame, the average outbreak size was smaller among facilities 

that reported either of these two interventions the week leading up to the first 

resident case compared with facilities that did not report these interventions. 

Finally, consistent with our hypothesis that temporal declines in outbreak size 

were due to increased outbreak awareness and control vigilance, both of these 

interventions were reported with increased frequency over time.  

This analysis has several limitations. In the simulation study, we assumed 

heterogeneous contact patterns structured into core (staff) and periphery 

(resident) groups (Dool et al., 2008; Grabowski & Mor, 2020). Detailed case 

studies in these settings, particularly ones describing contact patterns over time 

and in food processing facilities, would be valuable for improved understanding 

of spread. In addition, the transmission model we used is simple: it does not 

account for presymptomatic transmission or age-specific susceptibility. However, 

the main focus of the simulations was to show the outbreak size distributions in 
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structured populations under non-intervention scenarios and this result is unlikely 

to change with more detailed transmission models. The datasets were also 

limited to self-reported (care) and publicly-available (correctional, food) data. 

Food processing data in particular were sparsely available, highlighting the 

importance of a centralized surveillance system, similar to that of NHSN, to 

understanding outbreaks in these settings. Another dataset limitation was that 

reporting of some intervention variables to the NHSN began August 16 and as a 

result we reported differences in mean outbreak sizes with intervention access in 

facilities that reported their first case after this date. Other variables, such as 

access to N95 masks and resident access to testing were available prior to 

August 16 but there was little variation across facilities (generally facilities 

reported having both interventions), making it hard to determine their effects. 

Finally, the analysis of care facility data was descriptive and its aim was to 

provide support for our hypothesis that the wide deviation from expected 

outbreak size distributions could be due to increased awareness and uptake of 

control strategies. Detailed time series analyses and regressions accounting for 

facility outbreak timing, levels of community transmission (to inform the number 

of COVID-19 introductions to each facilities), and interventions may yield a more 

precise understanding of how COVID-19 can be controlled in these high-

transmission settings.  
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Conclusions 

Outbreak size distributions are indicative of underlying rates of 

transmission in populations. COVID-19 has led to frequent and deadly outbreaks 

in care, correctional, and food processing facilities in the US. However, this study 

suggests that improvement and uptake of control strategies over time mitigated 

spread and prevented the majority of large outbreaks from occurring. Though 

promising, the global pandemic is far from over and control measures will likely 

need to be in place in these populations for the foreseeable future.  
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Tables and Figures 

 

 
Figure 5.1 Simulated outbreak size distribution. 

Simulated outbreak size distribution with varying reproductive ratios (rows) and 
numbers of initially infectious cases (columns) show “J-shaped” curves are only 
found when the reproductive ratio is approximately one. Each plot shows the 
probability (histograms) and cumulative probability distribution (lines) of outbreak 
sizes.  



 
   

132 

 

 

 
Figure 5.2 COVID-19 Outbreak Size Distributions in the United States. 

COVID-19 outbreak size distributions in United States care (A), correctional (B), 
and food processing (C) facilities are “J-Shaped”. In care facilities (D), facilities 
reporting their first case in later months (labels) had outbreak size distributions 
that were more concentrated around small outbreaks. Each plot shows the 
frequency (histograms) and cumulative probability distribution (lines) of outbreak 
sizes.  
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Figure 5.3 Decreasing trend in care facility COVID-19 outbreak sizes over time.  

In the United States, COVID-19 outbreak sizes among residents (y-axis) in care 
facilities decreases over time (measured by week of first resident case reported 
shown on the x-axis). Boxplots represent the distribution of outbreak sizes in  
care facilities that reported their first resident case that week. Lines represent 
linear (blue) and general additive (red) model fits.  
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Figure 5.4 Spatial and temporal trends in care facility COVID-19 outbreak sizes.  

In the United States, the mean outbreak size by state (y-axis) decreases over 
time (measured by mean week of first resident case reported shown on the x-
axis). Lines represent linear (blue) and general additive (red) trends.  
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Figure 5.5 Increasing trend in care facilities flattening the outbreak curve. 

In the United States, the percentage of care facilities that never reported more 
than 5 weekly cases (y-axis) increased over time (measured by month of first 
resident case reported shown on the x-axis) strongly suggesting that increased 
vigilance and interventions “flattened the curve” in these vulnerable populations.  
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CONCLUSIONS 

Executive Summary 

Traditional, homogenous-mixing models of infectious diseases have had a 

long history of successes (Anderson & May, 1991) and have continued to provide 

valuable insights during our current global pandemic of COVID19 (Kissler et al., 

2020). Extensions of homogeneous mixing models that divide populations into 

subcompartments based on age, risk-level, or space have also proven to be 

extremely useful in understanding heterogeneity in infectious diseases incidence 

(Keeling & Rohani, 2007). In particular, age-assortative contact patterns are key 

to modeling respiratory transmitted infections such as measles, pertussis, and 

tuberculosis (Arregui et al., 2018; Mossong et al., 2008; Rohani et al., 2010; 

Schenzle, 1984). The overarching theme of this dissertation is to further 

understand and quantify how social mixing patterns affect infectious disease 

dynamics.  

In the first chapter, I introduced social contact networks, which describe 

the organization of interactions between individuals in a population, and a 

number of theoretical predictions that stem from their structure. An important idea 

in contact network epidemiology literature is that more central individuals will be 
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infected faster and more often than less central individuals (Christley et al., 

2005). In the second chapter, I studied whether recently diagnosed tuberculosis 

cases were more central in their social networks than community controls. 

Contrary to expectation and theory, this study found few differences in the 

centrality between cases and controls. In addition, Chapter 2 revealed stark 

differences in assortative mixing patterns by sex and made me wonder whether 

this assortative structure may contribute to excess burden of tuberculosis among 

men, the topic of Chapter 3. In this chapter, I designed a simulation study to 

disentangle the effects of sex-assorted mixing and biological differences in 

infection rates by sex on male-bias of tuberculosis. I showed that realistic levels 

of sex-assortativity cannot generate male-bias in tuberculosis alone but 

assortativity can amplify the consequences of biological sex-differences in 

infection rates and lead to higher levels of male-bias compared with random 

mixing networks.  

Chapter 1 additionally identified a gap in the network epidemiology 

literature surrounding the effects of core-periphery network structure on 

epidemics which is the topic of Chapter 4. The main finding from this chapter is 

that core-periphery network structure can lower the epidemic threshold for large 

outbreaks to occur due to the temporary persistence of infections in the core 

group. In the current pandemic of COVID19, I speculated that some high 

transmission settings, such as nursing homes and correctional facilities, may 

have core-periphery structure and therefore the outbreak size distribution in 
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these settings should match simulated distributions, unless interventions have 

substantially mitigated transmission. However, I identified a mismatch between 

simulations, without interventions, and real data suggesting preliminary, but 

promising, evidence that interventions taken inside these facilities have stopped 

large outbreaks from occurring frequently. Altogether, this dissertation uses a 

multi-scale approach to understanding how social structure and contact networks 

affect epidemics.  

Intellectual Significance of Findings 

This dissertation advances our understanding of how and when contact 

patterns affect disease spread and persistence, and thus the scenarios when 

traditional models may be sufficient or limited in describing disease dynamics. 

First, I showed how infection status was not associated with social network 

centrality in a population with endemic levels of TB. This result contradicts a main 

idea in contact network epidemiology (Christley et al., 2005), and suggests the 

same theory used to predict infection in newly invading infectious diseases may 

not apply to diseases that are endemic. Second, I not only found strong levels of 

sex-assorted contact patterns but also that TB cases were more likely to report 

mixing with males than control individuals, providing further support for the idea 

that males are contributing to excess transmission (Dodd et al., 2016). Third, I 

described conditions that increase the ability of sex-assortative contact patterns 

to amplify sex-differences in infectious diseases, testing the hypothesis 

presented in a recent review (Horton et al., 2020). Fourth, I filled a gap in the 
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network epidemiology literature surrounding the effects of core-periphery network 

structure on infectious disease dynamics at the population-level, and showed 

how the presence of a densely connected core group can diminish the epidemic 

threshold required for large outbreaks to occur, related to the phenomenon in 

scale-free networks (Chung & Lü, 2002; Pastor-Satorras & Vespignani, 2001). 

Core-periphery network structure may be present in a number of emerging 

COVID19 hotspots and be helpful in explaining epidemiology in these settings. 

Lastly, I found evidence that the interventions taken in COVID19 hotspots 

significantly reduced outbreak sizes.  

Practical implications of Findings 

This dissertation also has a number of practical implications. The second 

chapter suggests targeted treatment or contact tracing based on network 

centrality may be unhelpful for endemic infectious diseases. However, case 

finding could be optimized by focusing on male-contacts of recently diagnosed 

male cases. I also illustrated how different sampling designs affect inferences 

about underlying network structures. Results from the third chapter beg for basic 

research aiming to quantify proposed sex-differences in infection rates which 

could lead to improved treatments and predictions of disease burden, not just for 

tuberculosis but for many infectious diseases that are sex-biased (Guerra-

Silveira & Abad-Franch, 2013). The fourth chapter suggests that pathogens with 

transmission rates that are close to the epidemic threshold may benefit from 

contact networks that are structured into densely connected core groups and 
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sparsely connected periphery nodes, such as in correctional facilities and nursing 

homes, when and that interventions aiming to disrupt the core connectivity in this 

situation may be effective (e.g., by producing work “social bubbles” (Block et al., 

2020)). In addition, I showed how estimation of key parameters may be affected 

by network structure and how having multiple estimators may allow for improved 

estimation. Finally, the last chapter provides early evidence that certain 

interventions have mitigated spread in care facilities in the United States which 

may be helpful in maintaining vigilance in these populations as the pandemic is 

far from over. 

Implications for respiratory transmitted infections 

Tuberculosis and COVID-19 have the shared feature of being respiratory-

transmitted infections but differ in important ways (Table 6.1). As a result of their 

shared transmission modes, and because both currently lack a vaccine that 

protects against contagious forms of disease, prevention largely depends on 

reducing contact with infectious individuals through testing, case isolation, and 

contact tracing. (More drastic prevention measures such as lock-downs have 

also been taken for COVID-19). In addition, tuberculosis and COVID-19 both 

result in mostly subclinical infections. However, the nature and time scale of 

subclinical infection are different for these diseases. Asymptomatic, pauci-

symptomatic, and pre-symptomatic individuals testing positive for COVID-19 can 

be contagious and generally have undetectable viral loads for weeks. In contrast, 

it is traditionally thought that individuals with latent tuberculosis infection are not 
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contagious (though newer studies question this traditional dogma (Drain et al., 

2018)) and the duration of latent infection in tuberculosis is extremely variable 

(lasting months to decades). A final similarity between tuberculosis and COVID-

19 is the importance of transmission within closed settings (e.g., households, 

health care settings, bars, worship settings, and workplaces).  

What general lessons have we learned about respiratory transmitted 

diseases, variable time scales of infection, and contact patterns that this 

dissertation addresses? This dissertation highlighted the nuances of social 

structure and contact networks and their relative importance for respiratory 

transmitted infectious diseases potentially depending on the time scale of 

infection. While social structure (e.g., age- and sex-assortativity) caused by 

social roles leads to stable patterns in the types of individuals one interacts with, 

contact networks describe specific interactions between individuals which can be 

more fluid across time. This dissertation suggests the long time-scale of 

tuberculosis may cause incidence patterns to be more affected by the relatively 

stable social structures than by the contact structure of recent interactions. In 

contrast, for COVID-19 with a much shorter time scale of infection, recent contact 

networks are much more likely to be important for understanding transmission, 

especially in small populations living or working in closed settings such as 

nursing homes, correctional facilities, or food-processing plants. Thus, 

researchers aiming to identify the effect of contact networks on tuberculosis may 

need to collect multiple years of data. In contrast, for COVID-19, more subtle 



 
   

142 

patterns in assortative mixing may matter less than recent contact networks for 

modeling transmission patterns.  

Future research questions 

The questions and answers posed in this dissertation have led to more 

questions, as often happens in research. First, can we predict infection based on 

node position in contact networks for endemic infectious diseases? Second, 

when, why, and how should we incorporate both age and sex assortative 

patterns in models of infectious spread? Third, what are underlying contact 

patterns in emerging COVID19 hotspots, and are they representative of core-

periphery networks? Additionally, can we use hypothesis testing to identify which 

idealized network structures best represent real-world networks? Fourth, how 

vulnerable are care, correctional, and food processing facilities to future 

COVID19 outbreaks? Lastly, what are the spatial and demographic factors that 

led to large outbreaks in COVID19 hotspots?  
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Tables and Figures 

 
Table 6.1. Major similarities and differences in the epidemiology of tuberculosis 
and COVID-19.   
 

 Tuberculosis  COVID-19 
Transmission 

mode Respiratory (droplet, airborne) 

Global Prevalence 
10 million 
infections,  
1.6 million 

deaths (2019) 

Most infections 
subclinical 

~50 million 
infections,  
1.2 million  

deaths (2020) 
Time scale Months-Decades  Days-Weeks 

Reproductive ratio 5-15 (0.5-1.5)  2-4 
Diagnosis 

 
 

Treatment 
 
 

Prevention 

Non-Specific 
Tests 

Low treatment 
adherence 

Low vaccine 
efficacy 

 

Limited at first 
 

No “cure” 
 

No vaccine 

Control Passive case-finding, contact tracing 

Risk groups Co-infection, 
smokers, males  

Older age, 
inability to social 

distance 
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APPENDIX I  

 

Supplement: Association between male-bias in tuberculosis cases and social 

network structure in Kampala, Uganda 

Sensitivity analyses 

To examine potential biases on measures of node position and estimates 

of assortativity in second-level egocentric sampling, we performed two sensitivity 

analyses. First, we assessed the reliability of node position estimates from 

egocentric samples. To account for uncertainty in structure and size of the “true” 

social network in Kampala, we analyzed two types of networks proposed to 

resemble real-world social networks (small-world, SW, and scale-free, SF)  

across five different network sizes (N = 5	 ⋅ 101, 7.5 ⋅ 101, 1 ⋅ 10., 1.25 ⋅ 10., 1.5 ⋅

10.). We generated small-world networks with the Watts-Strogatz algorithm [1], 

starting connectivity of 5, and edge-rewiring probability of 0.05. We generated 

scale-free networks with the Barabasi-Albert algorithm [2] with linear attachment 

and 5 edges added in each step. Each combination of network type and size 

were replicated 15 times and sampled in three different ways: ego-only, first-

level, and second-level egocentric sampling. We then calculated the correlation 

between true node centrality and estimated node centrality for the ego nodes 

(n=240).  
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To understand how the Kampala network relates to synthetic networks, we 

calculated the clustering coefficient (the probability that neighbors of a node are 

themselves connected [3]) and fit to a power-law degree distribution because 

small-world networks are characterized by high clustering coefficients and scale-

free networks by a power-law degree distributions [4]. The power law degree 

distribution was fit to the Kampala data and synthetic networks using the method 

of maximum likelihood and the goodness-of-fit tests [5]. We additionally 

evaluated whether other distributions fit the data equally using the Vuong test 

statistic (approach detailed in [5]; implemented in the R package, poweRlaw [6]).  

In a second sensitivity analysis on estimates of assortativity in egocentric 

samples, we generated 15 replicates of synthetic networks across a spectrum of 

network assortativity (r≈ 0, 0.2, 0.4,0.6, 0.8) and two different network sizes (𝑁 =

1 ⋅ 105, 1 ⋅ 101). We generated networks with varying assortativity by first 

assigning each node to one of two groups (i.e., sex). Then, we set the number of 

within- and between-group edges per node from Poisson distributions (similar to 

algorithm in [7]). The mean degree in synthetic networks was 10. For example, in 

one combination, each node had an average of 5 edges within-group and 5 

edges between-group resulting in an overall network assortativity value of 

approximately 0. Following network simulations, we sampled each network using 

second-level egocentric sampling type with 240 randomly egos. Finally, we 

calculated the correlation between sampled assortativity and true assortativity of 
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the underlying network to understand the effects of egocentric sampling on 

estimates of network assortativity.  

Observed Kampala network fit to power-law degree distribution 

The degree distribution of the Kampala network could plausibly follow a 

power-law (Kampala data fell within bootstraps from the best-fit power-law 

distribution, p=0.25). However, the log-normal distribution could also not be ruled 

out for the tail of the degree distribution (likelihood-ratio-test showed that neither 

power-law nor log-normal was preferred, p=0.56). Recommended approach from 

Clauset et al. (2009) [5].  

 

 
Figure S.1.1 Clustering coefficients in simulated networks. 

Clustering coefficients from simulated networks of varying sizes that were 
sampled using a second-level egocentric design. We used these distributions to 
understand whether the underlying network in Kampala more closely resembles 
scale-free (SF) or small-world (SW) structure. The clustering coefficient of the 
Kampala network was 0.1, which was in between estimates from scale-free and 
small-world networks.  
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Figure S.1.2 Cumulative distribution function of Kampala network. 

The cumulative distribution function of node degree in the Kampala network can 
be explained by power-law and log-normal distributions but not exponential or 
Poisson distributions. The tail of the distribution was estimated to begin at 13 and 
values larger than 13 were used to fit the distributions (n=264). A fit to a power-
law distribution is an indication of scale-free networks but log-normal could not be 
ruled out using the methods detailed in Clauset et al. (2009) [5].  
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Figure S.1.3 Correlation between underlying assortativity coefficients and 
sampled assortativity coefficients in simulated networks. 

Estimated assortativity (𝜌<) is highly correlated with underlying network 
assortativity (𝜌) in second-level egocentric samples from networks of size 1,000 
and 10,000. When there is preferential assortative mixing within group (i.e., 
positive assortativity coefficients), estimated assortativity in second-level samples 
tend to underestimate the true amount of assortativity. The dashed grey line 
indicates the 1-1 line. Assortativity calculated with Newman’s assortativity 
coefficient [8].  
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Table S.1.1 Social Network Estimates. 

Social Network Estimates for Index Individuals stratified by Relationship Status 
and Sex. Values indicate the number of individuals (proportion) or mean 
(±	standard errors) for each variable 
 
 Single In a relationship  

Female 
n=44 

Male 
n=93 

Female 
n=34 

Male 
n=76 

Sig.  

Node position 
Degree 10.6	(±0.58) 10.4	(±0.41) 9.6	(±0.48) 10.8	(±0.53)  

Closeness 0.078 
(±0.002) 

0.075	(±0.002) 0.074 
(±0.003) 

0.078	(±0.001)  

Betweenness 0.012 
(±0.003) 

0.014	(±0.003) 0.010	(±0.002) 0.019	(±0.002)  
 

Distance to 
case 

3.5	(±0.4) 3.2	(±0.2) 3.9	(±0.3) 3.2	(±0.2)  

Mixing variables 
Proportion of 
all contacts 
with adult 
men 

0.27	(±0.03)	 0.49	(±0.03)	 0.29	(±0.04)	 0.46	(±0.03)	 ∗ 

Proportion of 
all contacts 
with adult 
women 

0.42	(±0.03)	 0.38	(±0.02)	 0.43	(±0.04)	 0.36	(±0.02)	 ∗ 

1Proportion of 
all contacts 
with children 

0.31	(±0.03)	 0.13	(±0.02)	 0.28	(±0.03)	 0.18	(±0.02)	 ∗ 

2Proportion of 
all contacts 
occurring 
within HH 

0.33	(±0.04)	 0.25 (±0.02) 0.33 (±0.03) 
 

0.30	(±0.02)	 ∗ 

Proportion of 
HH contacts 
occurring with 
children 

0.34 (±0.03) 0.28 (±0.02) 0.32 (±0.03) 0.28 (±0.02) ∗ 

∗ Significant difference (p <0.05 ) between means by index sex (male, female)  
⋄ Significant difference (p <0.05) between means by relationship status (single, 
monogamous/polygamous)  
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APPENDIX II  

 
Supplement: Effects of assortative mixing and sex-traits on male-bias in 

tuberculosis: A modelling study 

Description of the rewiring algorithm 
 

Rewired networks were initialized as small-world or scale-free networks 

because these networks resemble patterns of clustering and high-degree 

network hubs found in real-world social networks. Small world networks were 

initialized as a ring with edges to 5 nearest neighbors being rewired with 

probability 0.05 according to the Watts Strogatz algorithm (Watts and Strogatz 

1998). Scale free networks were initialized with linear preferential attachment and 

5 edges were added each step according to the Barabasi Albert algorithm 

(Barabasi and Albert 1999).  

 
Small world and scale free networks were then rewired to generate sex-assorted 

networks using Algorithm 1. 

 
Algorithm 1. Sex-assorted network rewiring algorithm.   
 
1. Simulate a network, G, of size N with nodes notated as 𝑣0,..= 
2. Randomly assign sex to each vertex 𝑣! 
3. Randomly rewire 20% of edges occurring between-sex 
4. Check that the network is still a single component, if not, reject rewiring and 

return to step 3 
5. Check for multiple edges or self-edges, and randomly rewire those edges 
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6. Continue process until the desired level of assortativity was reached within a 
small range of error (𝜖 = 0.05) 

 
Description of how disease was simulated on networks 

Here, I provide a description of the Gillespie algorithm used to simulate 

stochastic models of disease spread used in Chapters 3-5.  

 The implementation of the Gillespie algorithm with the “Epidemics On 

Networks” Python module (Miller & Ting, 2020) calculates the time when the next 

event occurs and then determines what that event will be. The iterative steps for 

the algorithm, which were simulated using the Gillespie_simple_contagion 

function, are found in Kiss, Miller & Simon (2017) and listed below for a SIR 

model.  

 

Algorithm 2. Iterative steps for the Gillespie algorithm used to simulate disease 

spread with a SIR model on networks.  

Input: Network G (with susceptible, infected and recovered nodes), per-edge 
transmission rate 𝜏, and recovery rate 𝛾. 
  

1. Count the number of individuals in each compartment, 𝑆, 𝐼, and 𝑅  
2. Calculate the total rate (𝑇) of all possible events that may occur. For an 

SIR model, 𝑇 is the sum of the rates each infected node recovers, 𝛾 × 𝑅 
and the sum of the rate each susceptible neighbor is infected. The rate 
each susceptible node is infected is 𝜏 × 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠.  

3. Calculate the waiting time, 𝑤, until the next event occurs based on an 
exponential distribution with mean equal to the total rate of all possible 
events, 𝑤~exp(𝑇). Update time step by adding 𝑤 to current time. 

4. Determine what the next event will be. Nodes will recover based on a 
random draw from a uniform distribution 𝑟~unif(0,	𝑇). If r < 𝛾 × 𝑅/𝑇, a 
random infected node is chosen to recover. Add this node to list 𝑅 and 
remove from list 𝐼. Else, a susceptible node will get infected with 
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probability proportional to 𝜏 × 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 and it will be 
removed from list 𝑆 and added to list 𝐼.  

5. Repeat with updated node statuses until there are no more infected 
nodes. 

 

Further modifications made for the models in Chapters 3-5 are as follows: for 

models with a latent period (SLIR and SLIRS) the total rate of change also 

included events based on disease progression to active infection (L→I transition). 

For models with events based on reversion to susceptibility (i.e., SIRS and 

SLIRS models), the total rate also includes the R→S transition.  

In Chapter 3, the following modifications were also made. Node sex was 

modeled in addition to disease status (𝑆I , 𝑆H, 𝐼I , 𝐼H, 𝑅I , 𝑅H). In the models varying 

sex-specific susceptibility and transmissibility, rates of infection by an infected 

(source) node to a susceptible (target) neighbor depended on the sex of the 

source and target nodes. Thus, additional infection rates were calculated in Step 

2 of Algorithm 2. Specifically, these are the sum of the rate of male nodes 

infecting male nodes, female nodes infecting female nodes, female nodes 

infecting male nodes and male nodes infecting female nodes. In the model 

varying sex-specific infectious periods, the rate of recovery depends on the 

infected node’s sex and so the sum of the recovery rates in Step 2 of Algorithm 2 

is the sum of male and female infected nodes recovering. How sex-specific 

infection and recovery rates were calculated is discussed in the main text 

(Chapter 3, Disease Model). The algorithm in Chapter 3 was terminated once 
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there were no longer any infected individuals (SIR, SLIR) or after 300 time steps 

(SIRS and SLIRS).   
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Figure S.2.1 Reproductive ratio and outbreak size across transmission rates. 

Comparison between analytically calculated 𝑅* (Kiss, Miller, Simon 2017) and 
simulated epidemic size on non-assorted and assorted networks. Horizontal grey 
line shows where 𝑅* = 1	and where ending epidemic size > 𝐼*. Vertical grey line 
approximately where 𝑅* = 1. Results are consistent for SIR and SLIR models. No 
sex-trait heterogeneity is included in these simulated data. Other parameters: 
	𝛾 = 0.5, 	𝐼* = 10.	For the SLIR model,  𝜎 = 0.25.  
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Figure S.2.2 Sensitivity of male-bias to network algorithm. 

Assortativity had similar effects on male-bias in Sah and rewired networks 
despite rewired networks being variable in other network statistics as assortativity 
is increased (shown in Figure S1). The M:F case bias, sex-traits, and relative 
male:female values of sex-traits are the same as in Figure 1.  Figure generated 
with 250 SLIR simulations of epidemics	with 𝜏 = 0.075 and	𝑅* ≈ 2.5.  
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Figure S.2.3 Sensitivity of male-bias to models with latent period. 

Same as Figure 2.1 in main paper but shown for SLIR and SLIRS. Interaction 
effects of sex-assortativity and sex-traits on M:F case bias (shown in color). Sex-
traits (vertical columns) are infectious period (IP), susceptibility (SUS), and 
transmissibility (TRA). M:F case bias is measured as the ratio of male to female 
recoveries (SLIR) or infections at equilibrium (SLIRS). Only parameter 
combinations leading to mean M:F case bias greater than 1.1 are colored (white 
boxes show mean M:F case bias from 1.7 to 1.9). Sex-traits are incorporated by 
holding respective overall parameter rates constant but increasing the male 
parameter by the value on the x-axis relative to the female trait. Figure generated 
with 250 simulations of epidemics on Sah networks with 𝜏 = 0.075, 𝑅* ≈ 2.5.  
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Figure S.2.4 Effect of assortativity on outbreak size and prevalence. 

The effect of assortativity on the final size or equilibrium prevalence of SIR and 
SIRS epidemics depends on underlying network type. Results are shown for 
outbreaks with no differences in male and female sex-traits. Figure generated 
with 250 simulations of epidemics. 
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Figure S.2.5 Network statistics across assortativity algorithms. 

We simulated TB spread on networks with varying assortativity generated by 
rewiring edges or with an algorithm developed by Sah et al. (2017). As 
assortativity increased, we measured changes in clustering (A), average path 
length (B), and degree assortativity (C) which can impact epidemic dynamics. 
The rewired small-world networks were especially vulnerable to disruptions in 
key network structures. Sah network structures were not affected by increases in 
assortativity.  
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APPENDIX III  

Supplement: The Effects of Core-Periphery Network Structure on Disease 

Spread in Isolated Populations 
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Figure S.3.1 Effects of core size on outbreak size. 

The size of core relative to the periphery (d) affects the final size of simulated 
outbreaks. Coreness (k) is shown in the color of histogram distribution and the 
final size (percent of the population infected at the end of the simulation) is 
shown along the x-axis. Columns are faceted by transmission rate (𝜏) and rows 
are faceted by the relative size of the core (d). Plot shows results for networks 
with 100 nodes and 500 simulations of each parameter combination.   
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Figure S.3.2 Effects of coreness on epidemic dynamics (N=5000). 

Relative changes in the peak size, peak time, and outbreak duration as k 
increased were larger when the transmission rate was lower compared with 
higher transmission rates. Coreness (k) is shown in the color of violin and the 
epidemic statistics are shown along the y-axis. Columns are faceted by 
transmission rate (𝜏) and rows are faceted by epidemic statistic. Plot shows 
results for networks with 5,000 nodes and 500 simulations of each parameter 
combination.   
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Figure S.3.3 Effects of coreness on epidemic dynamics (N=100) 

Relative changes in the peak size, peak time, and outbreak duration as k 
increased were larger when the transmission rate was lower compared with 
higher transmission rates. Coreness (k) is shown in the color of violin and the 
epidemic statistics are shown along the y-axis. Columns are faceted by 
transmission rate (𝜏) and rows are faceted by epidemic statistic. Plot shows 
results for networks with 100 nodes and 500 simulations of each parameter 
combination.   
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Figure S.3.4 Effects of core size on epidemic dynamics. 

The size of the core (d) affected trends in peak size, peak time, and outbreak 
duration. Coreness (k) is shown in the color of probability distribution and 
columns show epidemic statistics. Rows are faceted by the size of the core 
relative to periphery. Plot shows results for networks with 5,000 nodes, 𝜏 = 0.02 
and 500 simulations of each parameter combination.   
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Figure S.3.5 Characteristics of core-periphery networks. 

Characteristics of core-periphery networks. Core-periphery networks are neither 
degree-assorted (A) nor group-assorted (B) and changes in clustering are 
minimal (C) as coreness, k, increases. Distinguishing features of core-periphery 
networks are large variation in node degree (D) and high relative mean degree of 
core and periphery nodes (E). Coreness (k) is shown in color. Plot shows the 
density distribution of estimated statistics from networks with 5000 nodes and 
evenly sized core and periphery groups (d=0.5).  
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APPENDIX IV  

Supplement: Characteristics of COVID-19 Outbreaks in Care, Correctional, and 

Food Processing Facilities in the United States 

 

 

Figure S.4.1 Population size in facilities with COVID19 outbreaks. 

Population size variables in care (A), correctional (B), and food processing (C) 
plants. Population size in care, correctional, and food facilities was based on 
residents, incarcerated individuals, and employees per facility and estimated 
from CDC NHSN or publicly available information.  
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Figure S.4.2 Proportion of care facilities reporting access to four interventions 
over time.  

The proportion of care facilities that reported any current supply of N95 masks, 
access to in-house testing, surveillance testing asymptomatic residents, and 
testing residents facility-wide after a case is found varies over time. In particular, 
most facilities consistently reported having a supply of N95 masks and other 
intervention variables were only reported after August 16, 2020.  
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