## Can social networks explain patterns of male-bias in TB cases?

CEID Symposium 2019 Paige Miller



## Tuberculosis: A deadly human pathogen



*Mycobacterium tuberculosis:* 

- Respiratory transmission
- ~ 90% of infections result in latent TB (LTBI)

"One seventh of all human beings die of tuberculosis and ... if one considers only the **productive middle-age groups**, tuberculosis carries away onethird and often more of these..." – Robert Koch 1882

### Human tuberculosis is spread unevenly

Within populations **Across populations** Female Male ≥65 55-64 45-54 (stars) 45-54 (stars) 35-44 (stars) 35-44 (stars) 35-44 (stars) 45-24 (stars) 45-54 (stars) 45-54-54 (stars) 45-54-54-54 (stars) 45-54-54-54-54-54-54-54-54akistan 15-24 Number of Nigeria 5-14 incident cases 100 000 0 - 4500 000 400 000 400 000 800,000 1 200 000 0 1000000 Number of tuberculosis cases South Africa 2 500 000

Global TB Report, WHO (2017)

## A strikingly consistent trend in male-bias of TB

Global male:female case ratio in 2016:

1.8

Ratio of *prevalent* : *notified* cases was 1.5 times higher in men, suggesting that men are less likely than women to achieve diagnosis



## SUSCEPTIBILITY or EXPOSURE could differ between males and females



Lack of support for sexspecific susceptibility



Bates et al., JAMA (2007) Neyrolles & Quintana-Murci, Plos Med (2009)



We investigated whether individual-level (**position**) or population-level (**assortativity**) factors were associated with TB using network data from Kampala, Uganda (2013-2015)



#### Expectations if node position increases exposure to TB



Analyzed statistics for index individuals (cases and controls)

![](_page_7_Figure_3.jpeg)

## Few differences in individual network position by sex or index type (case or control)

![](_page_8_Figure_1.jpeg)

## Sex assortative mixing could increase exposure among men

Multivariate, log binomial analysis (age, HIV, contact type) of LTBI prevalence among contacts: LTBI is more prevalent among men than among women – PR: 1.4 (95% CI: 1.2 – 1.7)

 $\rho_{\text{sex}} = 0.25 \ (\pm 0.01)$ 

![](_page_9_Figure_2.jpeg)

Kakaire (2018)

## How might social networks explain male-bias in TB cases?

![](_page_10_Picture_1.jpeg)

*Population level*: Male assortativity

![](_page_10_Picture_3.jpeg)

#### A – Cluster 1

![](_page_11_Picture_1.jpeg)

#### B – Cluster 14

Nagonr

### Social networks differ from contact (spatial) networks

Opusta Road

A104

Industry Lane

Chamie et al. Plos One (2018)

© OpenStreetMap (and) contributors, CC-

# What are the characteristics of epidemics on assorted networks?

- **Degree-assortative** networks are more resilient to node-removal
- Age-assortative contact patterns impact age-distribution of cases and optimal age-targeted interventions
- Sex-assortative networks ... where one sex has higher susceptibility??

![](_page_12_Figure_4.jpeg)

Newman, *Phys Rev E* (2003) Mossong et al. *Plos Med* (2008) de Celles et al., *Sci Transl Med* (2018)

- Epidemiology in Action Research Group, Department of Epidemiology and Biostatistics, College of Public Health, UGA
- Makerere University, Kampala, Uganda
- Funding (NIAID RO1-AI093856; Fogarty International Center D43TW010045; NSF Graduate Research Fellowship)
- Computational resources (OSE, CEID)

## Acknowledgements

![](_page_13_Picture_5.jpeg)

COLLEGE OF PUBLIC HEALTH The University of Georgia

![](_page_13_Picture_7.jpeg)

Interdisciplinary Disease Ecology Across Scales UNIVERSITY OF GEORGIA

# Sensitivity analyses indicate correlation of estimated statistics with underlying statistics

![](_page_14_Figure_1.jpeg)

## Assortativity

![](_page_15_Figure_1.jpeg)