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Spatial signatures of an infectious disease on the verge of elimination
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Introduction
Disease eradication is the ultimate goal of
public health. However, sustaining economic
and political commitment poses a large
challenge to surveillance efforts during the
“end-game”. Changing statistical trends can
predict disease elimination1 and the goal of
our study was to determine if changing
spatial patterns can add predictive power
when forecasting disease elimination.

Methods
We simulated disease elimination using a spatial
Susceptible, Infected, Recovered (SIR) model of a measles-
like infection in a population (N=50,000) of unvaccinated
school children over a period of 6 months.

Spatial Model
• Individuals move within a 50 x 50 cell lattice and 

become infected depending on the cell-specific 
infection propensity (βi,j) and the # of infected 
individuals in each cell (II,j)

• We simulated transmission in both Constant (n=25 
replicates) and Patchy (n=25 replicates) to see if 
spatial patchiness “corrupts”
EWS reliability

Data Analysis 
When a system is approaching a critical transition, a handful
of statistical trends (i.e., Early warning signals) are expected
to change in characteristic ways (due to Critical Slowing
Down). Previous work has focused on temporal EWS1, but
slowing down also manifests in space2. In this study, we
compared the performance of temporal and spatial EWS:

A. To compare trends in EWS when the system is and is
not approaching criticality, we divided the simulation
output into null and test intervals.

B. We calculated temporal and spatial autocorrelation,
skewness, and coefficient of variation in both intervals.

C. We calculated the correlation of each EWS with that of
the expected trend if approaching a critical transition
(using Kendall’s Tau).

D. Finally, we calculated the performance of each EWS
using the AUC statistic.

Results

EARLY WARNING SIGNALS PREDICT DISEASE ELIMINATION
Temporal and spatial early warning signals (skewness,
coefficient of variation, and autocorrelation) can predict
disease elimination. However, spatial skewness and
coefficient of variation are better predictors than their
temporal counterparts. Regardless of the type of statistic
(temporal or spatial) spatial patchiness reduces predictability.
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BEGIN 
VACCINATION

*Recovery rate scaled to measles-like illness. 

Event Transition 
(ΔS, ΔI, ΔR)

Probability

Birth (1, 0, 0) μN
Death (-1, 0, 0), 

(0, -1, 0), or 
(0, 0, -1)

μN

Infection (-1, 1, 0) 1 − 𝑒$%&,()*&,(

Recovery (0, -1, 1) 1 − 𝑒$+

Vaccination (-1, 0 , 1) 1 − 𝑒-α(t-vax_start)

Table 1. Possible events for individuals in our model.

FEWER SPATIAL DATA POINTS ARE REQUIRED FOR 
FORECASTING ELIMINATION THAN TEMPORAL DATA POINTS
Spatial indicators (solid lines) are more informative indicators 
of elimination with fewer data points than temporal indicators 
(triangles)

Simulated populations reach an endemic equilibrium around
day 50. We start vaccination on day 120 eventually pushing
the system to disease elimination around day 250.
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Conclusions
Past work has shown that spatial patterns can
anticipate the approach to critical transitions in
natural systems and are more reliable than temporal
patterns alone2,3. In agreement with this previous
work, we found that specific patterns in spatial
incidence reports can anticipate disease elimination,
even when the underlying environment is
autocorrelated in space. Furthermore, patterns
calculated from spatial incidence reports required
fewer data points to achieve the same predictive
power. All together, our results indicate that spatial
surveillance programs may be more efficient ways to
measure progress towards disease elimination.
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AUC: Chance that a 
randomly chosen 𝞃 value for 
an EWS from the test 
interval is higher than a 
randomly chosen 𝞃 from the 
null interval. An AUC of 0.5 
means the statistic is doing 
no better than chance.


